The Inductive Graph Dimension from the Minimum Edge Clique Cover

In this paper we prove that the inductively defined graph dimension has a simple additive property under the join operation. The dimension of the join of two simple graphs is one plus the sum of the dimensions of the component graphs: dim ( G 1 + G 2 ) = 1 + dim G 1 + dim G 2 . We use this formula t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Graphs and combinatorics 2021-11, Vol.37 (6), p.2637-2654
Hauptverfasser: Betre, Kassahun, Salinger, Evatt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we prove that the inductively defined graph dimension has a simple additive property under the join operation. The dimension of the join of two simple graphs is one plus the sum of the dimensions of the component graphs: dim ( G 1 + G 2 ) = 1 + dim G 1 + dim G 2 . We use this formula to derive an expression for the inductive dimension of an arbitrary finite simple graph from its minimum edge clique cover. A corollary of the formula is that any arbitrary finite simple graph whose maximal cliques are all of order N has dimension N - 1 . We finish by finding lower and upper bounds on the inductive dimension of a simple graph in terms of its clique number.
ISSN:0911-0119
1435-5914
DOI:10.1007/s00373-021-02381-y