On the Number of Linear Multipartite Hypergraphs with Given Size
For any given integer r ⩾ 3 , let k = k ( n ) be an integer with r ⩽ k ⩽ n . A hypergraph is r -uniform if each edge is a set of r vertices, and is said to be linear if two edges intersect in at most one vertex. Let A 1 , … , A k be a given k -partition of [ n ] with | A i | = n i ⩾ 1 . An r -unifor...
Gespeichert in:
Veröffentlicht in: | Graphs and combinatorics 2021-11, Vol.37 (6), p.2487-2496 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For any given integer
r
⩾
3
, let
k
=
k
(
n
)
be an integer with
r
⩽
k
⩽
n
. A hypergraph is
r
-uniform if each edge is a set of
r
vertices, and is said to be linear if two edges intersect in at most one vertex. Let
A
1
,
…
,
A
k
be a given
k
-partition of [
n
] with
|
A
i
|
=
n
i
⩾
1
. An
r
-uniform hypergraph
H
is called
k
-
partite
if each edge
e
satisfies
|
e
∩
A
i
|
⩽
1
for
1
⩽
i
⩽
k
. In this paper, the number of linear
k
-partite
r
-uniform hypergraphs on
n
→
∞
vertices is determined asymptotically when the number of edges is
m
(
n
)
=
o
(
n
4
3
)
. For
k
=
n
, it is the number of linear
r
-uniform hypergraphs on vertex set [
n
] with
m
=
o
(
n
4
3
)
edges. |
---|---|
ISSN: | 0911-0119 1435-5914 |
DOI: | 10.1007/s00373-021-02370-1 |