Influent salinity affects substrate selection in surface flow constructed wetlands
To identify the effect of influent salinity on substrate selection, a study was conducted in pilot-scale surface flow constructed wetlands (SFCWs). Compared with gravel and sand SFCWs, soil SFCWs performed similarly or worse at low salinities, while at high salinities, soil SFCWs performed similarly...
Gespeichert in:
Veröffentlicht in: | Environmental science and pollution research international 2021-11, Vol.28 (44), p.62235-62245 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To identify the effect of influent salinity on substrate selection, a study was conducted in pilot-scale surface flow constructed wetlands (SFCWs). Compared with gravel and sand SFCWs, soil SFCWs performed similarly or worse at low salinities, while at high salinities, soil SFCWs performed similarly or better in removal efficiency (RE) of salt, total nitrogen (TN), total phosphorous (TP), and chemical oxygen demand (COD). Soil generally increased macrophyte growth (especially at high salinity) in terms of biomass, leaf chlorophyll concentration, root activity, and root catalase and superoxide dismutase activities. A general decrease in bacterial α-diversity in the rhizosphere was observed at high salinity, while compared with gravel or sand, soil improved rhizosphere bacterial community stability at varying salinities. At high salinity, compared with that of gravel or sand, the soil support of macrophytes and rhizosphere microorganisms increased pollutant RE in SFCWs. This finding highlights the necessity of varying substrate selection in SFCWs with influent salinities for both increasing pollutant RE and reducing input cost, with soil recommended at high influent salinity. |
---|---|
ISSN: | 0944-1344 1614-7499 |
DOI: | 10.1007/s11356-021-15036-5 |