Nonlinear dynamic formulation for flexible origami-based deployable structures considering self-contact and friction
Compared with the conventional rigid origami, the flexible origami has larger deformation and more complicated mechanical property and nonlinear problems due to self-contact and friction. In this paper, the nonlinear dynamic formulation for flexible origami-based deployable structures considering se...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2021-11, Vol.106 (3), p.1789-1822 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1822 |
---|---|
container_issue | 3 |
container_start_page | 1789 |
container_title | Nonlinear dynamics |
container_volume | 106 |
creator | Yuan, Tingting Tang, Lingling Liu, Zhuyong Liu, Jinyang |
description | Compared with the conventional rigid origami, the flexible origami has larger deformation and more complicated mechanical property and nonlinear problems due to self-contact and friction. In this paper, the nonlinear dynamic formulation for flexible origami-based deployable structures considering self-contact and friction is investigated. Firstly, a symmetric rigid origami model is presented based on the forward recursive formulation without the inclusion of contact, and then, a discretized dynamic model for flexible origami structures is established by using thin plate element of absolute nodal coordinate formulation. To consider the normal contact, the penalty method is adopted to enforce the nonpenetration condition. In order to improve the precision and applicability, a modified mixed contact method considering the friction effect is developed by integrating the advantages of node-to-surface, edge-to-surface and surface-to-surface contact elements. This proposed method can effectively avoid the mutual penetration of different corner nodes, element edges and contact element surfaces. Moreover, the tangential friction model considering the stick–slip transition and large sliding is established by the regularized Coulomb friction law. A series of numerical examples validate the effectiveness of the proposed mixed contact method considering the friction and show the advantage of the flexible model compared with the rigid origami model. Furthermore, the nonlinear performance of the flexible origami-based deployable structures due to the contact and friction is revealed. |
doi_str_mv | 10.1007/s11071-021-06860-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2596815126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596815126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c18aa7749dea106161ca3bc400fef0cccee895cff18c7037b11ccae2ece3dadd3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3Rmt92PoxS_oOhFwVtIJxNJ2W5qsgvuv3fXCt48DDNk3vcd8ghxiXCNAOVNQoQSFWRjFVUBajgSM1yWucqK-v1YzKDOFgpqeD8VZyltASDPoJqJ7jm0jW_ZRGmH1uw8SRfirm9M50M7zdI1_OU3DcsQ_ceoUBuT2ErL-yYMZlqkLvbU9ZGTpNAmbzn69kMmbpwaHzpDnTStlS56mmLPxYkzTeKL3z4Xb_d3r6tHtX55eFrdrhXlWHeKsDKmLBe1ZYNQYIFk8g0tABw7ICLmql6Sc1hRCXm5QSQynDFxbo21-VxcHXL3MXz2nDq9DX1sx5M6W9ZFhUvMilGVHVQUQ0qRnd5HvzNx0Ah6oqsPdPVIV__Q1cNoyg-mtJ_-yvEv-h_XN7tRgoI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596815126</pqid></control><display><type>article</type><title>Nonlinear dynamic formulation for flexible origami-based deployable structures considering self-contact and friction</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yuan, Tingting ; Tang, Lingling ; Liu, Zhuyong ; Liu, Jinyang</creator><creatorcontrib>Yuan, Tingting ; Tang, Lingling ; Liu, Zhuyong ; Liu, Jinyang</creatorcontrib><description>Compared with the conventional rigid origami, the flexible origami has larger deformation and more complicated mechanical property and nonlinear problems due to self-contact and friction. In this paper, the nonlinear dynamic formulation for flexible origami-based deployable structures considering self-contact and friction is investigated. Firstly, a symmetric rigid origami model is presented based on the forward recursive formulation without the inclusion of contact, and then, a discretized dynamic model for flexible origami structures is established by using thin plate element of absolute nodal coordinate formulation. To consider the normal contact, the penalty method is adopted to enforce the nonpenetration condition. In order to improve the precision and applicability, a modified mixed contact method considering the friction effect is developed by integrating the advantages of node-to-surface, edge-to-surface and surface-to-surface contact elements. This proposed method can effectively avoid the mutual penetration of different corner nodes, element edges and contact element surfaces. Moreover, the tangential friction model considering the stick–slip transition and large sliding is established by the regularized Coulomb friction law. A series of numerical examples validate the effectiveness of the proposed mixed contact method considering the friction and show the advantage of the flexible model compared with the rigid origami model. Furthermore, the nonlinear performance of the flexible origami-based deployable structures due to the contact and friction is revealed.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-021-06860-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Coulomb friction ; Dynamic models ; Dynamical Systems ; Engineering ; Friction ; Mechanical Engineering ; Nonlinear dynamics ; Original Paper ; Thin plates ; Vibration</subject><ispartof>Nonlinear dynamics, 2021-11, Vol.106 (3), p.1789-1822</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c18aa7749dea106161ca3bc400fef0cccee895cff18c7037b11ccae2ece3dadd3</citedby><cites>FETCH-LOGICAL-c319t-c18aa7749dea106161ca3bc400fef0cccee895cff18c7037b11ccae2ece3dadd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-021-06860-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-021-06860-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yuan, Tingting</creatorcontrib><creatorcontrib>Tang, Lingling</creatorcontrib><creatorcontrib>Liu, Zhuyong</creatorcontrib><creatorcontrib>Liu, Jinyang</creatorcontrib><title>Nonlinear dynamic formulation for flexible origami-based deployable structures considering self-contact and friction</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>Compared with the conventional rigid origami, the flexible origami has larger deformation and more complicated mechanical property and nonlinear problems due to self-contact and friction. In this paper, the nonlinear dynamic formulation for flexible origami-based deployable structures considering self-contact and friction is investigated. Firstly, a symmetric rigid origami model is presented based on the forward recursive formulation without the inclusion of contact, and then, a discretized dynamic model for flexible origami structures is established by using thin plate element of absolute nodal coordinate formulation. To consider the normal contact, the penalty method is adopted to enforce the nonpenetration condition. In order to improve the precision and applicability, a modified mixed contact method considering the friction effect is developed by integrating the advantages of node-to-surface, edge-to-surface and surface-to-surface contact elements. This proposed method can effectively avoid the mutual penetration of different corner nodes, element edges and contact element surfaces. Moreover, the tangential friction model considering the stick–slip transition and large sliding is established by the regularized Coulomb friction law. A series of numerical examples validate the effectiveness of the proposed mixed contact method considering the friction and show the advantage of the flexible model compared with the rigid origami model. Furthermore, the nonlinear performance of the flexible origami-based deployable structures due to the contact and friction is revealed.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Coulomb friction</subject><subject>Dynamic models</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Friction</subject><subject>Mechanical Engineering</subject><subject>Nonlinear dynamics</subject><subject>Original Paper</subject><subject>Thin plates</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3Rmt92PoxS_oOhFwVtIJxNJ2W5qsgvuv3fXCt48DDNk3vcd8ghxiXCNAOVNQoQSFWRjFVUBajgSM1yWucqK-v1YzKDOFgpqeD8VZyltASDPoJqJ7jm0jW_ZRGmH1uw8SRfirm9M50M7zdI1_OU3DcsQ_ceoUBuT2ErL-yYMZlqkLvbU9ZGTpNAmbzn69kMmbpwaHzpDnTStlS56mmLPxYkzTeKL3z4Xb_d3r6tHtX55eFrdrhXlWHeKsDKmLBe1ZYNQYIFk8g0tABw7ICLmql6Sc1hRCXm5QSQynDFxbo21-VxcHXL3MXz2nDq9DX1sx5M6W9ZFhUvMilGVHVQUQ0qRnd5HvzNx0Ah6oqsPdPVIV__Q1cNoyg-mtJ_-yvEv-h_XN7tRgoI</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Yuan, Tingting</creator><creator>Tang, Lingling</creator><creator>Liu, Zhuyong</creator><creator>Liu, Jinyang</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211101</creationdate><title>Nonlinear dynamic formulation for flexible origami-based deployable structures considering self-contact and friction</title><author>Yuan, Tingting ; Tang, Lingling ; Liu, Zhuyong ; Liu, Jinyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c18aa7749dea106161ca3bc400fef0cccee895cff18c7037b11ccae2ece3dadd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Coulomb friction</topic><topic>Dynamic models</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Friction</topic><topic>Mechanical Engineering</topic><topic>Nonlinear dynamics</topic><topic>Original Paper</topic><topic>Thin plates</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Tingting</creatorcontrib><creatorcontrib>Tang, Lingling</creatorcontrib><creatorcontrib>Liu, Zhuyong</creatorcontrib><creatorcontrib>Liu, Jinyang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Tingting</au><au>Tang, Lingling</au><au>Liu, Zhuyong</au><au>Liu, Jinyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear dynamic formulation for flexible origami-based deployable structures considering self-contact and friction</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>106</volume><issue>3</issue><spage>1789</spage><epage>1822</epage><pages>1789-1822</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>Compared with the conventional rigid origami, the flexible origami has larger deformation and more complicated mechanical property and nonlinear problems due to self-contact and friction. In this paper, the nonlinear dynamic formulation for flexible origami-based deployable structures considering self-contact and friction is investigated. Firstly, a symmetric rigid origami model is presented based on the forward recursive formulation without the inclusion of contact, and then, a discretized dynamic model for flexible origami structures is established by using thin plate element of absolute nodal coordinate formulation. To consider the normal contact, the penalty method is adopted to enforce the nonpenetration condition. In order to improve the precision and applicability, a modified mixed contact method considering the friction effect is developed by integrating the advantages of node-to-surface, edge-to-surface and surface-to-surface contact elements. This proposed method can effectively avoid the mutual penetration of different corner nodes, element edges and contact element surfaces. Moreover, the tangential friction model considering the stick–slip transition and large sliding is established by the regularized Coulomb friction law. A series of numerical examples validate the effectiveness of the proposed mixed contact method considering the friction and show the advantage of the flexible model compared with the rigid origami model. Furthermore, the nonlinear performance of the flexible origami-based deployable structures due to the contact and friction is revealed.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-021-06860-y</doi><tpages>34</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2021-11, Vol.106 (3), p.1789-1822 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2596815126 |
source | SpringerLink Journals - AutoHoldings |
subjects | Automotive Engineering Classical Mechanics Control Coulomb friction Dynamic models Dynamical Systems Engineering Friction Mechanical Engineering Nonlinear dynamics Original Paper Thin plates Vibration |
title | Nonlinear dynamic formulation for flexible origami-based deployable structures considering self-contact and friction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A12%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20dynamic%20formulation%20for%20flexible%20origami-based%20deployable%20structures%20considering%20self-contact%20and%20friction&rft.jtitle=Nonlinear%20dynamics&rft.au=Yuan,%20Tingting&rft.date=2021-11-01&rft.volume=106&rft.issue=3&rft.spage=1789&rft.epage=1822&rft.pages=1789-1822&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-021-06860-y&rft_dat=%3Cproquest_cross%3E2596815126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596815126&rft_id=info:pmid/&rfr_iscdi=true |