Nonlinear dynamic formulation for flexible origami-based deployable structures considering self-contact and friction

Compared with the conventional rigid origami, the flexible origami has larger deformation and more complicated mechanical property and nonlinear problems due to self-contact and friction. In this paper, the nonlinear dynamic formulation for flexible origami-based deployable structures considering se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2021-11, Vol.106 (3), p.1789-1822
Hauptverfasser: Yuan, Tingting, Tang, Lingling, Liu, Zhuyong, Liu, Jinyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1822
container_issue 3
container_start_page 1789
container_title Nonlinear dynamics
container_volume 106
creator Yuan, Tingting
Tang, Lingling
Liu, Zhuyong
Liu, Jinyang
description Compared with the conventional rigid origami, the flexible origami has larger deformation and more complicated mechanical property and nonlinear problems due to self-contact and friction. In this paper, the nonlinear dynamic formulation for flexible origami-based deployable structures considering self-contact and friction is investigated. Firstly, a symmetric rigid origami model is presented based on the forward recursive formulation without the inclusion of contact, and then, a discretized dynamic model for flexible origami structures is established by using thin plate element of absolute nodal coordinate formulation. To consider the normal contact, the penalty method is adopted to enforce the nonpenetration condition. In order to improve the precision and applicability, a modified mixed contact method considering the friction effect is developed by integrating the advantages of node-to-surface, edge-to-surface and surface-to-surface contact elements. This proposed method can effectively avoid the mutual penetration of different corner nodes, element edges and contact element surfaces. Moreover, the tangential friction model considering the stick–slip transition and large sliding is established by the regularized Coulomb friction law. A series of numerical examples validate the effectiveness of the proposed mixed contact method considering the friction and show the advantage of the flexible model compared with the rigid origami model. Furthermore, the nonlinear performance of the flexible origami-based deployable structures due to the contact and friction is revealed.
doi_str_mv 10.1007/s11071-021-06860-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2596815126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596815126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c18aa7749dea106161ca3bc400fef0cccee895cff18c7037b11ccae2ece3dadd3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3Rmt92PoxS_oOhFwVtIJxNJ2W5qsgvuv3fXCt48DDNk3vcd8ghxiXCNAOVNQoQSFWRjFVUBajgSM1yWucqK-v1YzKDOFgpqeD8VZyltASDPoJqJ7jm0jW_ZRGmH1uw8SRfirm9M50M7zdI1_OU3DcsQ_ceoUBuT2ErL-yYMZlqkLvbU9ZGTpNAmbzn69kMmbpwaHzpDnTStlS56mmLPxYkzTeKL3z4Xb_d3r6tHtX55eFrdrhXlWHeKsDKmLBe1ZYNQYIFk8g0tABw7ICLmql6Sc1hRCXm5QSQynDFxbo21-VxcHXL3MXz2nDq9DX1sx5M6W9ZFhUvMilGVHVQUQ0qRnd5HvzNx0Ah6oqsPdPVIV__Q1cNoyg-mtJ_-yvEv-h_XN7tRgoI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596815126</pqid></control><display><type>article</type><title>Nonlinear dynamic formulation for flexible origami-based deployable structures considering self-contact and friction</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yuan, Tingting ; Tang, Lingling ; Liu, Zhuyong ; Liu, Jinyang</creator><creatorcontrib>Yuan, Tingting ; Tang, Lingling ; Liu, Zhuyong ; Liu, Jinyang</creatorcontrib><description>Compared with the conventional rigid origami, the flexible origami has larger deformation and more complicated mechanical property and nonlinear problems due to self-contact and friction. In this paper, the nonlinear dynamic formulation for flexible origami-based deployable structures considering self-contact and friction is investigated. Firstly, a symmetric rigid origami model is presented based on the forward recursive formulation without the inclusion of contact, and then, a discretized dynamic model for flexible origami structures is established by using thin plate element of absolute nodal coordinate formulation. To consider the normal contact, the penalty method is adopted to enforce the nonpenetration condition. In order to improve the precision and applicability, a modified mixed contact method considering the friction effect is developed by integrating the advantages of node-to-surface, edge-to-surface and surface-to-surface contact elements. This proposed method can effectively avoid the mutual penetration of different corner nodes, element edges and contact element surfaces. Moreover, the tangential friction model considering the stick–slip transition and large sliding is established by the regularized Coulomb friction law. A series of numerical examples validate the effectiveness of the proposed mixed contact method considering the friction and show the advantage of the flexible model compared with the rigid origami model. Furthermore, the nonlinear performance of the flexible origami-based deployable structures due to the contact and friction is revealed.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-021-06860-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Classical Mechanics ; Control ; Coulomb friction ; Dynamic models ; Dynamical Systems ; Engineering ; Friction ; Mechanical Engineering ; Nonlinear dynamics ; Original Paper ; Thin plates ; Vibration</subject><ispartof>Nonlinear dynamics, 2021-11, Vol.106 (3), p.1789-1822</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c18aa7749dea106161ca3bc400fef0cccee895cff18c7037b11ccae2ece3dadd3</citedby><cites>FETCH-LOGICAL-c319t-c18aa7749dea106161ca3bc400fef0cccee895cff18c7037b11ccae2ece3dadd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-021-06860-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-021-06860-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Yuan, Tingting</creatorcontrib><creatorcontrib>Tang, Lingling</creatorcontrib><creatorcontrib>Liu, Zhuyong</creatorcontrib><creatorcontrib>Liu, Jinyang</creatorcontrib><title>Nonlinear dynamic formulation for flexible origami-based deployable structures considering self-contact and friction</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>Compared with the conventional rigid origami, the flexible origami has larger deformation and more complicated mechanical property and nonlinear problems due to self-contact and friction. In this paper, the nonlinear dynamic formulation for flexible origami-based deployable structures considering self-contact and friction is investigated. Firstly, a symmetric rigid origami model is presented based on the forward recursive formulation without the inclusion of contact, and then, a discretized dynamic model for flexible origami structures is established by using thin plate element of absolute nodal coordinate formulation. To consider the normal contact, the penalty method is adopted to enforce the nonpenetration condition. In order to improve the precision and applicability, a modified mixed contact method considering the friction effect is developed by integrating the advantages of node-to-surface, edge-to-surface and surface-to-surface contact elements. This proposed method can effectively avoid the mutual penetration of different corner nodes, element edges and contact element surfaces. Moreover, the tangential friction model considering the stick–slip transition and large sliding is established by the regularized Coulomb friction law. A series of numerical examples validate the effectiveness of the proposed mixed contact method considering the friction and show the advantage of the flexible model compared with the rigid origami model. Furthermore, the nonlinear performance of the flexible origami-based deployable structures due to the contact and friction is revealed.</description><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Control</subject><subject>Coulomb friction</subject><subject>Dynamic models</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Friction</subject><subject>Mechanical Engineering</subject><subject>Nonlinear dynamics</subject><subject>Original Paper</subject><subject>Thin plates</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3Rmt92PoxS_oOhFwVtIJxNJ2W5qsgvuv3fXCt48DDNk3vcd8ghxiXCNAOVNQoQSFWRjFVUBajgSM1yWucqK-v1YzKDOFgpqeD8VZyltASDPoJqJ7jm0jW_ZRGmH1uw8SRfirm9M50M7zdI1_OU3DcsQ_ceoUBuT2ErL-yYMZlqkLvbU9ZGTpNAmbzn69kMmbpwaHzpDnTStlS56mmLPxYkzTeKL3z4Xb_d3r6tHtX55eFrdrhXlWHeKsDKmLBe1ZYNQYIFk8g0tABw7ICLmql6Sc1hRCXm5QSQynDFxbo21-VxcHXL3MXz2nDq9DX1sx5M6W9ZFhUvMilGVHVQUQ0qRnd5HvzNx0Ah6oqsPdPVIV__Q1cNoyg-mtJ_-yvEv-h_XN7tRgoI</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Yuan, Tingting</creator><creator>Tang, Lingling</creator><creator>Liu, Zhuyong</creator><creator>Liu, Jinyang</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211101</creationdate><title>Nonlinear dynamic formulation for flexible origami-based deployable structures considering self-contact and friction</title><author>Yuan, Tingting ; Tang, Lingling ; Liu, Zhuyong ; Liu, Jinyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c18aa7749dea106161ca3bc400fef0cccee895cff18c7037b11ccae2ece3dadd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Control</topic><topic>Coulomb friction</topic><topic>Dynamic models</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Friction</topic><topic>Mechanical Engineering</topic><topic>Nonlinear dynamics</topic><topic>Original Paper</topic><topic>Thin plates</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Tingting</creatorcontrib><creatorcontrib>Tang, Lingling</creatorcontrib><creatorcontrib>Liu, Zhuyong</creatorcontrib><creatorcontrib>Liu, Jinyang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Tingting</au><au>Tang, Lingling</au><au>Liu, Zhuyong</au><au>Liu, Jinyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear dynamic formulation for flexible origami-based deployable structures considering self-contact and friction</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>106</volume><issue>3</issue><spage>1789</spage><epage>1822</epage><pages>1789-1822</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>Compared with the conventional rigid origami, the flexible origami has larger deformation and more complicated mechanical property and nonlinear problems due to self-contact and friction. In this paper, the nonlinear dynamic formulation for flexible origami-based deployable structures considering self-contact and friction is investigated. Firstly, a symmetric rigid origami model is presented based on the forward recursive formulation without the inclusion of contact, and then, a discretized dynamic model for flexible origami structures is established by using thin plate element of absolute nodal coordinate formulation. To consider the normal contact, the penalty method is adopted to enforce the nonpenetration condition. In order to improve the precision and applicability, a modified mixed contact method considering the friction effect is developed by integrating the advantages of node-to-surface, edge-to-surface and surface-to-surface contact elements. This proposed method can effectively avoid the mutual penetration of different corner nodes, element edges and contact element surfaces. Moreover, the tangential friction model considering the stick–slip transition and large sliding is established by the regularized Coulomb friction law. A series of numerical examples validate the effectiveness of the proposed mixed contact method considering the friction and show the advantage of the flexible model compared with the rigid origami model. Furthermore, the nonlinear performance of the flexible origami-based deployable structures due to the contact and friction is revealed.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-021-06860-y</doi><tpages>34</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2021-11, Vol.106 (3), p.1789-1822
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2596815126
source SpringerLink Journals - AutoHoldings
subjects Automotive Engineering
Classical Mechanics
Control
Coulomb friction
Dynamic models
Dynamical Systems
Engineering
Friction
Mechanical Engineering
Nonlinear dynamics
Original Paper
Thin plates
Vibration
title Nonlinear dynamic formulation for flexible origami-based deployable structures considering self-contact and friction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T20%3A12%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20dynamic%20formulation%20for%20flexible%20origami-based%20deployable%20structures%20considering%20self-contact%20and%20friction&rft.jtitle=Nonlinear%20dynamics&rft.au=Yuan,%20Tingting&rft.date=2021-11-01&rft.volume=106&rft.issue=3&rft.spage=1789&rft.epage=1822&rft.pages=1789-1822&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-021-06860-y&rft_dat=%3Cproquest_cross%3E2596815126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596815126&rft_id=info:pmid/&rfr_iscdi=true