Nonlinear dynamic formulation for flexible origami-based deployable structures considering self-contact and friction
Compared with the conventional rigid origami, the flexible origami has larger deformation and more complicated mechanical property and nonlinear problems due to self-contact and friction. In this paper, the nonlinear dynamic formulation for flexible origami-based deployable structures considering se...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2021-11, Vol.106 (3), p.1789-1822 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Compared with the conventional rigid origami, the flexible origami has larger deformation and more complicated mechanical property and nonlinear problems due to self-contact and friction. In this paper, the nonlinear dynamic formulation for flexible origami-based deployable structures considering self-contact and friction is investigated. Firstly, a symmetric rigid origami model is presented based on the forward recursive formulation without the inclusion of contact, and then, a discretized dynamic model for flexible origami structures is established by using thin plate element of absolute nodal coordinate formulation. To consider the normal contact, the penalty method is adopted to enforce the nonpenetration condition. In order to improve the precision and applicability, a modified mixed contact method considering the friction effect is developed by integrating the advantages of node-to-surface, edge-to-surface and surface-to-surface contact elements. This proposed method can effectively avoid the mutual penetration of different corner nodes, element edges and contact element surfaces. Moreover, the tangential friction model considering the stick–slip transition and large sliding is established by the regularized Coulomb friction law. A series of numerical examples validate the effectiveness of the proposed mixed contact method considering the friction and show the advantage of the flexible model compared with the rigid origami model. Furthermore, the nonlinear performance of the flexible origami-based deployable structures due to the contact and friction is revealed. |
---|---|
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-021-06860-y |