Evolution of the Microstructure of Laser Powder Bed Fusion Ti-6Al-4V During Post-Build Heat Treatment
The microstructure of additively manufactured Ti-6Al-4V (Ti64) produced by a laser powder bed fusion process was studied during post-build heat treatments between 1043 K (770 °C) and just above the β transus temperature 1241 K (1008 °C) in situ using high-energy X-ray diffraction. Parallel studies o...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2021-12, Vol.52 (12), p.5165-5181 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The microstructure of additively manufactured Ti-6Al-4V (Ti64) produced by a laser powder bed fusion process was studied during post-build heat treatments between 1043 K (770 °C) and just above the
β
transus temperature 1241 K (1008 °C)
in situ
using high-energy X-ray diffraction. Parallel studies on traditionally manufactured wrought and annealed Ti64 were completed as a baseline comparison. The initial and final grain structures were characterized using electron backscatter diffraction. Likewise, the initial texture, dislocation density, and final texture were determined with X-ray diffraction. The evolution of the microstructure, including the phase evolution, internal stress, qualitative dislocation density, and vanadium distribution between the constituent phases were monitored with
in situ
X-ray diffraction. The as-built powder bed fusion material was single-phase hexagonal close packed (to the measurement resolution) with a fine acicular grain structure and exhibited a high dislocation density and intergranular residual stress. Recovery of the high dislocation density and annealing of the internal stress were observed to initiate concurrently at a relatively low temperature of 770 K (497 °C). Transformation to the
β
phase initiated at roughly 913 K (640 °C), after recovery had occurred. These results are meant to be used to design post-build heat treatments resulting in specified microstructures and properties. |
---|---|
ISSN: | 1073-5623 1543-1940 |
DOI: | 10.1007/s11661-021-06455-7 |