Operators in pre-Riesz spaces: moduli and homomorphisms
We focus on two topics that are related to moduli of elements in partially ordered vector spaces. First, we relate operators that preserve moduli to generalized notions of lattice homomorphisms, such as Riesz homomorphisms, Riesz* homomorphisms, and positive disjointness preserving operators. We als...
Gespeichert in:
Veröffentlicht in: | Positivity : an international journal devoted to the theory and applications of positivity in analysis 2021-11, Vol.25 (5), p.2099-2136 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We focus on two topics that are related to moduli of elements in partially ordered vector spaces. First, we relate operators that preserve moduli to generalized notions of lattice homomorphisms, such as Riesz homomorphisms, Riesz* homomorphisms, and positive disjointness preserving operators. We also consider complete Riesz homomorphisms, which generalize order continuous lattice homomorphisms. Second, we characterize elements with a modulus by means of disjoint elements and apply this result to obtain moduli of functionals and operators in various settings. On spaces of continuous functions, we identify those differences of Riesz* homomorphisms that have a modulus. Many of our results for pre-Riesz spaces of continuous functions lead to results on order unit spaces, where the functional representation is used. |
---|---|
ISSN: | 1385-1292 1572-9281 |
DOI: | 10.1007/s11117-021-00854-1 |