Effects of Alkali-Activated Algae Biochar on Soil Improvement after Phosphorus Absorption: Efficiency and Mechanism

Biochar is often used for the removal of phosphorus in wastewater. However, the improper treatment of adsorbed biochar might cause secondary pollution. In order to promote the recycling and harmless utilization of biochar with adsorbed phosphorus, a new modified biochar (ABC) was prepared from cyano...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2021-11, Vol.13 (21), p.11973
Hauptverfasser: Liu, Yan-Ning, He, Li-Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biochar is often used for the removal of phosphorus in wastewater. However, the improper treatment of adsorbed biochar might cause secondary pollution. In order to promote the recycling and harmless utilization of biochar with adsorbed phosphorus, a new modified biochar (ABC) was prepared from cyanobacteria in this study. The maximum adsorption capacity of ABC calculated from the Langmuir isotherm model was 38.17 mg·g−1. ABC was used to absorb phosphorus in wastewater, whose product (ABC/P) was used for soil improvement and soybean cultivation. The results showed that adding the proper amount of ABC/P could significantly increase the pH of the soil (from 6.52 ± 0.04 to 7.49 ± 0.08), organic matter content (from 34.02 ± 0.41 to 47.05 ± 0.14 g·kg−1), cation exchange capacity (from 3.01 ± 0.18 to 3.76 ± 0.07 cmol·kg−1), water-holding capacity (from 28.78 ± 0.34 to 35.03 ± 0.31%), effective phosphorus content, and total phosphorus content. Meanwhile, the soil alkaline phosphatase activity was improved. The plant height, root length, and fresh quality were promoted by planting soybeans in ABC/P-improved soil and were better than those of the control group. Therefore, ABC/P, as a new type of phosphorus fertilizer, has the potential for soil amendment for legume crops.
ISSN:2071-1050
2071-1050
DOI:10.3390/su132111973