Modélisation de la croissance de la tomate (Lycopersicum esculentum) à partir des réseaux de neurones artificiels dans la region de daloa (Côte d'Ivoire)

RESUME: La tomate est une plante herbacée annuelle, de la famille des Solanacées. Elle est cultivée pour ses fruits qui sont consommés soit frais ou cuit, soit transformés industriellement. Sa croissance est un phénomène complexe qui fait intervenir plusieurs paramètres. Une étude des paramètres de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of innovation and applied studies 2021-11, Vol.34 (3), p.483-496
Hauptverfasser: N'guessan, Kouame, Emmanuel, Assidjo Nogbou
Format: Artikel
Sprache:fre
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:RESUME: La tomate est une plante herbacée annuelle, de la famille des Solanacées. Elle est cultivée pour ses fruits qui sont consommés soit frais ou cuit, soit transformés industriellement. Sa croissance est un phénomène complexe qui fait intervenir plusieurs paramètres. Une étude des paramètres de croissance réalisée dans la région de Daloa (Côte d'Ivoire) a montré une complexité de la croissance de la tomate au niveau du nombre de feuilles, de la longueur des feuilles, de la largeur des feuilles, de la hauteur du tronc et de la circonférence du tronc de la plante de tomate. A cet effet, des modèles mathématiques ont été élaborés pour prévoir la croissance de la plante de tomate à partir des réseaux de neurones artificiels pour le nombre de feuilles, la longueur des feuilles, la largeur des feuilles, la hauteur de la plante et la circonférence du tronc de la plante de tomate. Les coefficients de détermination entre les mesures expérimentales et les mesures prédites par les réseaux de neurones artificiels sont respectivement de 0,9722; 0,9925; 0,997; 0,9945 et 0,9926 pour la hauteur de la plante, le nombre de feuille, la circonférence de la plante, la longueur et la largeur des feuilles. Ces résultats sont satisfaisants dans la mesure où tous les coefficients de détermination (R2) sont supérieurs à 0,97. Ces coefficients proche de 1 montrent une bonne interpolation entre les valeurs expérimentales et celles prédites par le modèle. Ils indiquent que les valeurs prédites par les réseaux de neurones artificiels sont pratiquement à plus de 97 % proches des valeurs expérimentales. De ce fait, les réseaux de neurones artificiels sont suffisamment fiables pour prédire la croissance de la tomate au niveau du nombre de feuilles, de la longueur des feuilles, de la largeur des feuilles, de la hauteur de la plante et de la circonférence du tronc de la plante de tomate.
ISSN:2028-9324