Recurrent Generalization of F-Polynomials for Virtual Knots and Links

F-polynomials for virtual knots were defined by Kaur, Prabhakar and Vesnin in 2018 using flat virtual knot invariants. These polynomials naturally generalize Kauffman's affine index polynomial and use smoothing in classical crossing of a virtual knot diagram. In this paper we introduce weight f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-11
Hauptverfasser: Gill, Amrendra, Ivanov, Maxim, Prabhakar, Madeti, Vesnin, Andrei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:F-polynomials for virtual knots were defined by Kaur, Prabhakar and Vesnin in 2018 using flat virtual knot invariants. These polynomials naturally generalize Kauffman's affine index polynomial and use smoothing in classical crossing of a virtual knot diagram. In this paper we introduce weight functions for ordered orientable virtual and flat virtual link. A flat virtual link is an equivalence class of virtual links in respect to a local symmetry changing type of classical crossing in a diagram. By considering three types of smoothings in classical crossings of a virtual link diagram and suitable weight functions, we provide a recurrent construction for new invariants. We demonstrate by providing explicit examples, that newly defined polynomial invariants are stronger than F-polynomials.
ISSN:2331-8422