An Incompatibility Result on non-Archimedean Integration

We prove that a Riemann-like integral on non-Archimedean extensions of cannot assign an integral to every function whose standard part is measurable and simultaneously satisfy the fundamental theorem of calculus. We also discuss how existing theories of non-Archimedean integration deal with the inco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:P-adic numbers, ultrametric analysis, and applications ultrametric analysis, and applications, 2021-10, Vol.13 (4), p.316-319
1. Verfasser: Bottazzi, Emanuele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that a Riemann-like integral on non-Archimedean extensions of cannot assign an integral to every function whose standard part is measurable and simultaneously satisfy the fundamental theorem of calculus. We also discuss how existing theories of non-Archimedean integration deal with the incompatibility of these conditions.
ISSN:2070-0466
2070-0474
DOI:10.1134/S2070046621040063