An Incompatibility Result on non-Archimedean Integration
We prove that a Riemann-like integral on non-Archimedean extensions of cannot assign an integral to every function whose standard part is measurable and simultaneously satisfy the fundamental theorem of calculus. We also discuss how existing theories of non-Archimedean integration deal with the inco...
Gespeichert in:
Veröffentlicht in: | P-adic numbers, ultrametric analysis, and applications ultrametric analysis, and applications, 2021-10, Vol.13 (4), p.316-319 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that a Riemann-like integral on non-Archimedean extensions of
cannot assign an integral to every function whose standard part is measurable and simultaneously satisfy the fundamental theorem of calculus. We also discuss how existing theories of non-Archimedean integration deal with the incompatibility of these conditions. |
---|---|
ISSN: | 2070-0466 2070-0474 |
DOI: | 10.1134/S2070046621040063 |