Estimates for Schur Multipliers and Double Operator Integrals—A Wavelet Approach
We discuss the work of Birman and Solomyak on the singular numbers of integral operators from the point of view of modern approximation theory, in particular, with the use of wavelet techniques. We are able to provide a simple proof of norm estimates for integral operators with kernel in . This reco...
Gespeichert in:
Veröffentlicht in: | Functional analysis and its applications 2021-04, Vol.55 (2), p.81-93 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We discuss the work of Birman and Solomyak on the singular numbers of integral operators from the point of view of modern approximation theory, in particular, with the use of wavelet techniques. We are able to provide a simple proof of norm estimates for integral operators with kernel in
. This recovers, extends, and sheds new light on a theorem of Birman and Solomyak. We also use these techniques to provide a simple proof of Schur multiplier bounds for double operator integrals with bounded symbol in
, which extends Birman and Solomyak’s result to symbols without compact domain. |
---|---|
ISSN: | 0016-2663 1573-8485 |
DOI: | 10.1134/S0016266321020015 |