Expansive dynamics on locally compact groups
Let $\mathcal {G}$ be a second countable, Hausdorff topological group. If $\mathcal {G}$ is locally compact, totally disconnected and T is an expansive automorphism then it is shown that the dynamical system $(\mathcal {G}, T)$ is topologically conjugate to the product of a symbolic full-shift on a...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2021-12, Vol.41 (12), p.3768-3779 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$\mathcal {G}$
be a second countable, Hausdorff topological group. If
$\mathcal {G}$
is locally compact, totally disconnected and T is an expansive automorphism then it is shown that the dynamical system
$(\mathcal {G}, T)$
is topologically conjugate to the product of a symbolic full-shift on a finite number of symbols, a totally wandering, countable-state Markov shift and a permutation of a countable coset space of
$\mathcal {G}$
that fixes the defining subgroup. In particular if the automorphism is transitive then
$\mathcal {G}$
is compact and
$(\mathcal {G}, T)$
is topologically conjugate to a full-shift on a finite number of symbols. |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2020.115 |