The use of FEA and semi-empirical equations for weight estimation of a passenger aircraft
Purpose The purpose of this paper is to present the result of calculations that were performed to estimate the structural weight of the passenger aircraft using novel technological solution. Mass penalty resulting from the installation of the fuselage boundary layer ingestion device was needed in th...
Gespeichert in:
Veröffentlicht in: | Aircraft engineering 2021-11, Vol.93 (9), p.1412-1420 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
The purpose of this paper is to present the result of calculations that were performed to estimate the structural weight of the passenger aircraft using novel technological solution. Mass penalty resulting from the installation of the fuselage boundary layer ingestion device was needed in the CENTRELINE project to be able to estimate the real benefits of the applied technology.
Design/methodology/approach
This paper focusses on the finite element analysis (FEA) of the fuselage and wing primary load-carrying structures. Masses obtained in these analyses were used as an input for the total structural mass calculation based on semi-empirical equations.
Findings
Combining FEA with semi-empirical equations makes it possible to estimate the mass of structures at an early technology readiness level and gives the possibility of obtaining more accurate results than those obtained using only empirical formulas. The applied methodology allows estimating the mass in case of using unusual structural solutions, which are not covered by formulas available in the literature.
Practical implications
Accurate structural mass estimation is possible at an earlier design stage of the project based on the presented methodology, which allows for easier and less costly changes in designed aircrafts.
Originality/value
The presented methodology is an original method of mass estimation based on a two-track approach. The analytical formulas available in the literature have worked well for aeroplanes of conventional design, but thanks to the connection with FEA presented in this paper, it is possible to estimate the structure mass of aeroplanes using unconventional technological solutions. |
---|---|
ISSN: | 1748-8842 1758-4213 |
DOI: | 10.1108/AEAT-12-2020-0287 |