Novel best path selection approach based on hybrid improved A algorithm and reinforcement learning

Path planning of intelligent driving vehicles in emergencies is a hot research issue, this paper proposes a new method of the best path selection for the intelligent driving vehicles to solve this problem. Based on the prior knowledge applied reinforcement learning strategy and the searching- optimi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2021-12, Vol.51 (12), p.9015-9029
Hauptverfasser: Liu, Xiaohuan, Zhang, Degan, Zhang, Ting, Cui, Yuya, Chen, Lu, Liu, Si
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Path planning of intelligent driving vehicles in emergencies is a hot research issue, this paper proposes a new method of the best path selection for the intelligent driving vehicles to solve this problem. Based on the prior knowledge applied reinforcement learning strategy and the searching- optimized A* algorithm, we designed a hybrid algorithm to help intelligent driving vehicles selecting the best path in the traffic network in emergencies including limited height, width, weight, accident, and traffic jam. Through simulation experiments and scene experiments, it is proved that the proposed algorithm has good stability, high efficiency, and practicability.
ISSN:0924-669X
1573-7497
DOI:10.1007/s10489-021-02303-8