Chemically modified lipase from Thermomyces lanuginosus with enhanced esterification and transesterification activities

Lipase from Thermomyces lanuginosus is one of the most explored enzymes for the esterification of several added-value industrial compounds, such as biodiesel, fragrances, and flavors. Its selectivity in these reactions is mostly related with its activity towards small alcohols. In this work, the imp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemCatChem 2021-11, Vol.13 (21), p.4524-4531
Hauptverfasser: Noro, Jennifer Martins, Cavaco-Paulo, Artur, Silva, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lipase from Thermomyces lanuginosus is one of the most explored enzymes for the esterification of several added-value industrial compounds, such as biodiesel, fragrances, and flavors. Its selectivity in these reactions is mostly related with its activity towards small alcohols. In this work, the impact of the chemical modification, with 4 dodecyl chains at its surface, was evaluated regarding its transesterification and esterification activities, comparing with the native form. Linear size-differentiated alcohols (from 1 to 20 carbons in the aliphatic chain) were used to explore for the first time the effect of the chain length in both transesterification and esterification reactions, using p-nitrophenyl palmitate and oleic acid as model compounds, respectively. The chemically modified lipase showed an outstanding improvement of its catalytic performance than the native enzyme, being this increase directly proportional to the size of the alcohols chain used as substrates. The enormous potential and remarkable versatility of this novel super catalyst was here demonstrated, where diverse types of esters, differing in their potential applications (biodiesel, cosmetics, fine chemistry), were efficiently synthesized. The produced esters were fully characterized by 1H NMR, GC-MS, and FTIR. This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020 unit. Jennifer Noro also thanks to FCT for funding (SFRH/BD/121673/2016).
ISSN:1867-3880
1867-3899
DOI:10.1002/cctc.202101050