Research on Maize Disease Recognition Method Based on Improved ResNet50
In order to solve the problem of accuracy and speed of disease identification in real-time spraying operation in maize field, an improved ResNet50 maize disease identification model was proposed. Firstly, this paper uses the Adam algorithm to optimize the model, adjusts the learning strategy through...
Gespeichert in:
Veröffentlicht in: | Mobile information systems 2021-10, Vol.2021, p.1-6 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to solve the problem of accuracy and speed of disease identification in real-time spraying operation in maize field, an improved ResNet50 maize disease identification model was proposed. Firstly, this paper uses the Adam algorithm to optimize the model, adjusts the learning strategy through the inclined triangle learning rate, increases L2 regularization to reduce over fitting, and adopts exit strategy and ReLU incentive function. Then, the first convolution kernel of the ResNet50 model is modified into three 3 x 3 small convolution kernels. Finally, the ratio of training set to verification set is 3 : 1. Through experimental comparison, the recognition accuracy of the maize disease recognition model proposed in this paper is higher than that of other models. The image recognition accuracy in the data set is 98.52%, the image recognition accuracy in the farmland is 97.826%, and the average recognition speed is 204 ms, which meets the accuracy and speed requirements of maize field spraying operation and provides technical support for the research of maize field spraying equipment. |
---|---|
ISSN: | 1574-017X 1875-905X |
DOI: | 10.1155/2021/9110866 |