Prediction of the critical temperature of a superconductor by using the WOA/MARS, Ridge, Lasso and Elastic-net machine learning techniques
This study builds a predictive model capable of estimating the critical temperature of a superconductor from experimentally determined physico-chemical properties of the material (input variables): features extracted from the thermal conductivity, atomic radius, valence, electron affinity and atomic...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2021-12, Vol.33 (24), p.17131-17145 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study builds a predictive model capable of estimating the critical temperature of a superconductor from experimentally determined physico-chemical properties of the material (input variables): features extracted from the thermal conductivity, atomic radius, valence, electron affinity and atomic mass. This original model is built using a novel hybrid algorithm relied on the multivariate adaptive regression splines (MARS) technique in combination with a nature-inspired meta-heuristic optimization algorithm termed the whale optimization algorithm (WOA) that mimics the social behavior of humpback whales. Additionally, the Ridge, Lasso and Elastic-net regression models were fitted to the same experimental data for comparison purposes. The results of the current investigation indicate that the critical temperature of a superconductor can be successfully predicted using this proposed hybrid WOA/MARS-based model. Furthermore, the results obtained with the Ridge, Lasso and Elastic-net regression models are clearly worse than those obtained with the WOA/MARS-based model. |
---|---|
ISSN: | 0941-0643 1433-3058 |
DOI: | 10.1007/s00521-021-06304-z |