Feature selection by a distance measure method of subnormal and non-convex fuzzy sets
Distance measures of fuzzy sets have been developed for feature selection and finding redundant features in the fields of decision-making, prediction, and classification problems. Terms commonly used in the definition of fuzzy sets are normal and convex fuzzy sets. This paper extends the general fuz...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & fuzzy systems 2021-01, Vol.41 (4), p.5199-5205 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Distance measures of fuzzy sets have been developed for feature selection and finding redundant features in the fields of decision-making, prediction, and classification problems. Terms commonly used in the definition of fuzzy sets are normal and convex fuzzy sets. This paper extends the general fuzzy set definitions to subnormal and non-convex fuzzy sets that are more precise when implementing uncertain knowledge representations by weighing fuzzy membership functions. A distance measure method for subnormal and non-convex fuzzy sets is proposed for embedded feature selection. Constructing fuzzy membership functions and extracting fuzzy rules play a critical role in fuzzy classification systems. The weighted fuzzy membership functions prevent the combinatorial explosion of fuzzy rules in multiple fuzzy rule-based systems. The proposed method was validated by a comparison with two other methods. Our proposed method demonstrated higher accuracies in training and test, with scores of 97.95% and 93.98%, respectively, compared to the other two methods. |
---|---|
ISSN: | 1064-1246 1875-8967 |
DOI: | 10.3233/JIFS-219005 |