Eigenvalue contour lines of Kac–Murdock–Szegő matrices with a complex parameter
A previous paper studied the so-called borderline curves of the Kac–Murdock–Szegő matrix Kn(ρ)=[ρ|j−k|]j,k=1n, where ρ∈C. These are the level curves (contour lines) in the complex-ρ plane on which Kn(ρ) has a type-1 or type-2 eigenvalue of modulus n, where n is the matrix dimension. Those curves hav...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2021-11, Vol.629, p.87-111 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A previous paper studied the so-called borderline curves of the Kac–Murdock–Szegő matrix Kn(ρ)=[ρ|j−k|]j,k=1n, where ρ∈C. These are the level curves (contour lines) in the complex-ρ plane on which Kn(ρ) has a type-1 or type-2 eigenvalue of modulus n, where n is the matrix dimension. Those curves have cusps at all critical points ρ=ρc at which multiple (double) eigenvalues occur. The present paper determines corresponding curves pertaining to eigenvalues of modulus ν≠n. We find that these curves no longer present cusps; and that, when ν |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2021.07.016 |