Precise Proton Redistribution for Two‐Electron Redox in Aqueous Zinc/Manganese Dioxide Batteries

The liquid electrolyte in conventional zinc/manganese dioxide (Zn/MnO2) batteries conduces to the capacity limitation of one‐electron redox from MnO2 to MnOOH, as well as undesired Mn loss with capacity deterioration. Herein, to conquer these challenges, a new idea is proposed on the precise proton...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2021-11, Vol.11 (41), p.n/a
Hauptverfasser: Shen, Zhaoxi, Tang, Ziqing, Li, Chaowei, Luo, Lei, Pu, Jun, Wen, Zhaorui, Liu, Yu, Ji, Yu, Xie, Junpeng, Wang, Litong, Yao, Yagang, Hong, Guo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The liquid electrolyte in conventional zinc/manganese dioxide (Zn/MnO2) batteries conduces to the capacity limitation of one‐electron redox from MnO2 to MnOOH, as well as undesired Mn loss with capacity deterioration. Herein, to conquer these challenges, a new idea is proposed on the precise proton redistribution in the hydrogel electrolyte for the preferred two‐electron redox reaction. Specifically, an acidic layer in the hydrogel adjoins the MnO2 cathode to maintain the two‐electron redox, a neutral layer adjoins the zinc anode to inhibit the dendrite growth, which is separated by a mildly alkaline layer to immobilize the proton distribution. The two‐electron redox of MnO2/Mn2+ and anode protection are demonstrated to play key roles in battery performance. Such a battery presents specific capacities of 516 mA h g−1 at 0.05 A g−1, as well as a capacity retention of 93.18% at 5 A g−1 after 5000 cycles without extra Mn2+ addition in the electrolyte. More importantly, fibrous Zn/MnO2 batteries using the tri‐layer electrolyte can sustain 2000 cycles with high initial capacity of 235 mAh g−1 at 1 A g−1. After 6000 times folding in 180°, it can maintain 99.54% capacity. When integrated into user's clothing or portable accessories, the fibrous battery is demonstrated as a great potential in wearable electronics. An innovative three‐layer hydrogel named ABC‐H is fabricated as electrolyte on the precise proton redistribution for the preferred two‐electron redox reaction. Such hydrogel electrolyte is beneficial for fibrous Zn/MnO2 batteries, with high capability, excellent stability, and good flexibility, etc. With these abilities to be integrated into user's clothing or portable accessories, it demonstrates a great potential in wearable electronics.
ISSN:1614-6832
1614-6840
DOI:10.1002/aenm.202102055