Dirichlet form analysis of the Jacobi process
We construct and analyze the Jacobi process - in mathematical biology referred to as Wright-Fisher diffusion - using a Dirichlet form. The corresponding Dirichlet space takes the form of a Sobolev space with different weights for the function itself and its derivative. Depending on the parameters we...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct and analyze the Jacobi process - in mathematical biology referred to as Wright-Fisher diffusion - using a Dirichlet form. The corresponding Dirichlet space takes the form of a Sobolev space with different weights for the function itself and its derivative. Depending on the parameters we characterize the boundary behavior of the functions in the Dirichlet space, show density results, derive Sobolev embeddings and verify functional inequalities of Hardy type. Since the generator is a hypergeometric differential operator, many of the proofs can be carried out by explicit calculations involving hypergeometric functions. We deduce corresponding properties for the associated semigroup and Markov process and show that the latter is up to minor technical modifications a solution to the Jacobi SDE. |
---|---|
ISSN: | 2331-8422 |