Combining material and model pedigree is foundational to making ICME a reality
With the increased emphasis on reducing the cost and time to market of new materials, the need for analytical tools that enable the virtual design and optimization of materials throughout their processing-internal structure-property-performance envelope, along with the capturing and storing of the a...
Gespeichert in:
Veröffentlicht in: | Integrating materials and manufacturing innovation 2015-12, Vol.4 (1), p.37-62 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the increased emphasis on reducing the cost and time to market of new materials, the need for analytical tools that enable the virtual design and optimization of materials throughout their processing-internal structure-property-performance envelope, along with the capturing and storing of the associated material and model information across its life cycle, has become critical. This need is also fueled by the demands for higher efficiency in material testing; consistency, quality, and traceability of data; product design; engineering analysis; as well as control of access to proprietary or sensitive information. Fortunately, materials information management systems and physics-based multiscale modeling methods have kept pace with the growing user demands. Herein, recent efforts to identify best practices associated with these user demands and key principles for the development of a robust materials information management system will be discussed. The goals are to enable the connections at various length scales to be made between experimental data and corresponding multiscale modeling toolsets and, ultimately, to enable ICME to become a reality. In particular, the NASA Glenn Research Center efforts towards establishing such a database (for combining material and model pedigree) associated with both monolithic and composite materials as well as a multiscale, micromechanics-based analysis toolset for such materials will be discussed. |
---|---|
ISSN: | 2193-9764 2193-9772 |
DOI: | 10.1186/s40192-015-0031-2 |