Highly sensitive piezoresistive pressure sensors based on laser-induced graphene with molybdenum disulfide nanoparticles

Wearable pressure sensors have drawn significant attention because of their extensive applications in motion detection, tactile sensing, and health monitoring. However, the complex manufacturing process and high cost of active materials make low-cost, large-scale production elusive. In this work, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Technological sciences 2021-11, Vol.64 (11), p.2408-2414
Hauptverfasser: Hao, DaPeng, Yang, RuoXi, Yi, Ning, Cheng, HuanYu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wearable pressure sensors have drawn significant attention because of their extensive applications in motion detection, tactile sensing, and health monitoring. However, the complex manufacturing process and high cost of active materials make low-cost, large-scale production elusive. In this work, we report a flexible piezoresistive pressure sensor assembled with two 3D laser-induced graphene (LIG) foam electrodes on a polyimide thin film from a simple laser scribing process in the ambient environment. The design of the air gap between the two foam electrodes allows the sensor to showcase a low limit of detection of 0.274 Pa, which provides favorable sensing performance in motion detection and wrist pulse monitoring. The addition of spherical MoS 2 nanoparticles between the two foam electrodes further enhances the sensitivity to 88 kPa −1 and increases the sensing range to significantly outperform the previous literature reports. The demonstrated LIG pressure sensors also exhibit fast response/recovery rates and excellent durability/repeatability.
ISSN:1674-7321
1869-1900
DOI:10.1007/s11431-021-1899-9