Non-commutative Rank and Semi-stability of Quiver Representations
Fortin and Reutenauer defined the non-commutative rank for a matrix with entries that are linear functions. The non-commutative rank is related to stability in invariant theory, non-commutative arithmetic circuits, and Edmonds' problem. We will generalize the non-commutative rank to the represe...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-10 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fortin and Reutenauer defined the non-commutative rank for a matrix with entries that are linear functions. The non-commutative rank is related to stability in invariant theory, non-commutative arithmetic circuits, and Edmonds' problem. We will generalize the non-commutative rank to the representation theory of quivers and define non-commutative Hom and Ext spaces. We will relate these new notions to King's criterion for \(\sigma\)-stability of quiver representations, and the general Hom and Ext spaces studied by Schofield. We discuss polynomial time algorithms that compute the non-commutative Homs and Exts and find an optimal witness for the \(\sigma\)-semi-stability of a quiver representation. |
---|---|
ISSN: | 2331-8422 |