Attention mechanism based LSTM in classification of stressed speech under workload

In order to improve the robustness of speech recognition systems, this study attempts to classify stressed speech caused by the psychological stress under multitasking workloads. Due to the transient nature and ambiguity of stressed speech, the stress characteristics is not represented in all the se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Intelligent data analysis 2021-01, Vol.25 (6), p.1603-1627
Hauptverfasser: Yao, Xiao, Sheng, Zhengyan, Gu, Min, Wang, Haibin, Xu, Ning, Liu, Xiaofeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to improve the robustness of speech recognition systems, this study attempts to classify stressed speech caused by the psychological stress under multitasking workloads. Due to the transient nature and ambiguity of stressed speech, the stress characteristics is not represented in all the segments in stressed speech as labeled. In this paper, we propose a multi-feature fusion model based on the attention mechanism to measure the importance of segments for stress classification. Through the attention mechanism, each speech frame is weighted to reflect the different correlations to the actual stressed state, and the multi-channel fusion of features characterizing the stressed speech to classify the speech under stress. The proposed model further adopts SpecAugment in view of the feature spectrum for data augment to resolve small sample sizes problem among stressed speech. During the experiment, we compared the proposed model with traditional methods on CASIA Chinese emotion corpus and Fujitsu stressed speech corpus, and results show that the proposed model has better performance in speaker-independent stress classification. Transfer learning is also performed for speaker-dependent classification for stressed speech, and the performance is improved. The attention mechanism shows the advantage for continuous speech under stress in authentic context comparing with traditional methods.
ISSN:1088-467X
1571-4128
DOI:10.3233/IDA-205429