Acoustic response to transverse oscillations in a solar coronal loop

Context. Magnetohydrodynamic (MHD) waves play an important role in the dynamics and heating of the solar corona. Their investigation also reveals information about the local conditions. Transverse (Alfvénic) oscillations of loops commonly occur in response to solar eruptions. It has been shown that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2021-10, Vol.654, p.A33
Hauptverfasser: White, S. J., Verwichte, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Context. Magnetohydrodynamic (MHD) waves play an important role in the dynamics and heating of the solar corona. Their investigation also reveals information about the local conditions. Transverse (Alfvénic) oscillations of loops commonly occur in response to solar eruptions. It has been shown that these oscillations elicit an acoustic response through wave coupling at the footpoint and the pondermotive force. Aims. We extend the modelling of wave coupling between a transverse loop oscillation and slow magnetoacoustic waves through line-tied footpoint boundary conditions by considering the effect of transverse loop structuring and non-linearity. Methods. We combine analytical wave modelling with fully non-linear MHD simulations to study the wave field of propagating slow waves in a two-dimensional slab loop (arcade) model. Results. We demonstrate that transverse loop oscillations generate propagating slow waves from the footpoints with the same periodicity but shorter wavelength determined by the local sound speed. The degree of wave coupling is proportional to the square root of the plasma- β . The slow wave field is anti-symmetric in the direction of transverse wave polarisation. We show through synthetic diagnostics that this has important consequences for their observability in terms of the orientation of the loop with respect to the observer. We also show that for the interpretation of intensity oscillations associated with typical loop oscillations the ponderomotive response also needs to be taken into account. The modelling presented here allows for the successful identification of the slow waves and pondermotive response in a previous observational study.
ISSN:0004-6361
1432-0746
DOI:10.1051/0004-6361/202141515