A posteriori error estimates for semilinear optimal control problems
In two and three dimensional Lipschitz, but not necessarily convex, polytopal domains, we devise and analyze a reliable and efficient a posteriori error estimator for a semilinear optimal control problem; control constraints are also considered. We consider a fully discrete scheme that discretizes t...
Gespeichert in:
Veröffentlicht in: | ESAIM. Mathematical modelling and numerical analysis 2021-09, Vol.55 (5), p.2293-2322 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In two and three dimensional Lipschitz, but not necessarily convex, polytopal domains, we devise and analyze a reliable and efficient
a posteriori
error estimator for a semilinear optimal control problem; control constraints are also considered. We consider a fully discrete scheme that discretizes the state and adjoint equations with piecewise linear functions and the control variable with piecewise constant functions. The devised error estimator can be decomposed as the sum of three contributions which are associated to the discretization of the state and adjoint equations and the control variable. We extend our results to a scheme that approximates the control variable with piecewise linear functions and also to a scheme that approximates the solution to a nondifferentiable optimal control problem. We illustrate the theory with two and three-dimensional numerical examples. |
---|---|
ISSN: | 0764-583X 1290-3841 |
DOI: | 10.1051/m2an/2021033 |