Post‐anthesis thermal stress induces differential accumulation of bioactive compounds in field‐grown barley
BACKGROUND Barley (Hordeum vulgare L.) is a healthy grain because of its high content of dietary fibre and phenolic compounds. It faces periods of high temperature during grain filling, frequently reducing grain weight. Heat stress may also affect some of the bioactive compounds present in the grain...
Gespeichert in:
Veröffentlicht in: | Journal of the science of food and agriculture 2021-12, Vol.101 (15), p.6496-6504 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | BACKGROUND
Barley (Hordeum vulgare L.) is a healthy grain because of its high content of dietary fibre and phenolic compounds. It faces periods of high temperature during grain filling, frequently reducing grain weight. Heat stress may also affect some of the bioactive compounds present in the grain. To produce quality grains that provide nutritional and health benefits, it is important to understand the effect of environmental stresses on the quantity and quality of bioactive compounds.
RESULTS
We have studied the effect of post‐anthesis thermal stress on barley bioactive compounds and antioxidant capacity under Mediterranean field conditions during two consecutive growing seasons in four barley genotypes. Thermal stress affected grain weight and size and changed the relative composition of bioactive compounds. The relationship between heat stress and grain β‐glucans and arabinoxylans content was indirect, as the resulting increases in concentrations were due to the lower grain weight under stress. Conversely, heat stress had a significant direct impact on some phenolic compounds, increasing their concentrations differentially across genotypes, which contributed to an improvement in antioxidant capacity of up to 30%.
CONCLUSION
Post‐anthesis thermal stress had a significant effect on β‐glucans, arabinoxylans, phenolic compound concentration and antioxidant capacity of barley grains. Final grain quality could, at least partially, be controlled in order to increase the bioactive concentrations in the barley grain, by cultivation in growing areas prone to heat stress. Late sowings or late flowering genotypes could also be considered, should a premium be implemented to compensate for lower yields. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. |
---|---|
ISSN: | 0022-5142 1097-0010 |
DOI: | 10.1002/jsfa.11321 |