Octahedralizing 3-Colorable 3-Polytopes

We investigate the question of whether any d -colorable simplicial d -polytope can be octahedralized, i.e., can be subdivided to a d -dimensional geometric cross-polytopal complex. We give a positive answer in dimension 3, with the additional property that the octahedralization introduces no new ver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2021-12, Vol.66 (4), p.1429-1445
Hauptverfasser: Codenotti, Giulia, Venturello, Lorenzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the question of whether any d -colorable simplicial d -polytope can be octahedralized, i.e., can be subdivided to a d -dimensional geometric cross-polytopal complex. We give a positive answer in dimension 3, with the additional property that the octahedralization introduces no new vertices on the boundary of the polytope.
ISSN:0179-5376
1432-0444
DOI:10.1007/s00454-020-00262-4