Octahedralizing 3-Colorable 3-Polytopes
We investigate the question of whether any d -colorable simplicial d -polytope can be octahedralized, i.e., can be subdivided to a d -dimensional geometric cross-polytopal complex. We give a positive answer in dimension 3, with the additional property that the octahedralization introduces no new ver...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2021-12, Vol.66 (4), p.1429-1445 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the question of whether any
d
-colorable simplicial
d
-polytope can be octahedralized, i.e., can be subdivided to a
d
-dimensional geometric cross-polytopal complex. We give a positive answer in dimension 3, with the additional property that the octahedralization introduces no new vertices on the boundary of the polytope. |
---|---|
ISSN: | 0179-5376 1432-0444 |
DOI: | 10.1007/s00454-020-00262-4 |