Using data from nesting beach monitoring and satellite telemetry to improve estimates of marine turtle clutch frequency and population abundance

Population abundance data are often used to define species’ conservation status. Abundance of marine turtles is typically estimated using nesting beach monitoring data such as nest counts and clutch frequency (CF, i.e., the number of nests female turtles lay within a nesting season). However, studie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine biology 2021-12, Vol.168 (12), Article 170
Hauptverfasser: Santos, Armando J. B., Vieira, Daniel H. G., Bellini, Claudio, Corso, Gilberto, A. Ceriani, Simona, Fuentes, Mariana M. P. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Population abundance data are often used to define species’ conservation status. Abundance of marine turtles is typically estimated using nesting beach monitoring data such as nest counts and clutch frequency (CF, i.e., the number of nests female turtles lay within a nesting season). However, studies have shown that CF determined solely from nesting beach monitoring data can be underestimated, leading to inaccurate abundance estimates. To obtain reliable estimates of CF for hawksbill turtles in northeastern Brazil (6.273356° S, 35.036271° W), the region with the highest nesting density in the South Atlantic, data from beach monitoring and satellite telemetry were combined from 2014 to 2019. Beach monitoring data indicated the date of first nesting event, while state-space modeling of satellite telemetry data indicated the departure date of turtles, allowing calculations of residence length at breeding site and CF estimates based on internesting intervals. Females were estimated to nest up to six times within the nesting season with CF estimates between 4.5 and 4.8 clutches per female. CF estimates were used to determine the number of nesting females at the study site based in two approaches: considering and not considering transient turtles. Our approach and findings highlight that transients heavily influence CF estimates and need for reconsideration of how this key parameter is commonly determined for marine turtle populations and the use of beach monitoring data and satellite telemetry for estimations of CF.
ISSN:0025-3162
1432-1793
DOI:10.1007/s00227-021-03983-z