Minimal volume entropy of free-by-cyclic groups and 2-dimensional right-angled Artin groups
Let G be a free-by-cyclic group or a 2-dimensional right-angled Artin group. We provide an algebraic and a geometric characterization for when each aspherical simplicial complex with fundamental group isomorphic to G has minimal volume entropy equal to 0. In the nonvanishing case, we provide a posit...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2021-12, Vol.381 (3-4), p.1253-1281 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
be a free-by-cyclic group or a 2-dimensional right-angled Artin group. We provide an algebraic and a geometric characterization for when each aspherical simplicial complex with fundamental group isomorphic to
G
has minimal volume entropy equal to 0. In the nonvanishing case, we provide a positive lower bound to the minimal volume entropy of an aspherical simplicial complex of minimal dimension for these two classes of groups. Our results rely upon a criterion for the vanishing of the minimal volume entropy for 2-dimensional groups with uniform uniform exponential growth. This criterion is shown by analyzing the fiber
π
1
-growth collapse and non-collapsing assumptions of Babenko–Sabourau (Minimal volume entropy and fiber growth,
arXiv:2102.04551
, 2020). |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-021-02211-9 |