Minimal volume entropy of free-by-cyclic groups and 2-dimensional right-angled Artin groups

Let G be a free-by-cyclic group or a 2-dimensional right-angled Artin group. We provide an algebraic and a geometric characterization for when each aspherical simplicial complex with fundamental group isomorphic to G has minimal volume entropy equal to 0. In the nonvanishing case, we provide a posit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2021-12, Vol.381 (3-4), p.1253-1281
Hauptverfasser: Bregman, Corey, Clay, Matt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a free-by-cyclic group or a 2-dimensional right-angled Artin group. We provide an algebraic and a geometric characterization for when each aspherical simplicial complex with fundamental group isomorphic to G has minimal volume entropy equal to 0. In the nonvanishing case, we provide a positive lower bound to the minimal volume entropy of an aspherical simplicial complex of minimal dimension for these two classes of groups. Our results rely upon a criterion for the vanishing of the minimal volume entropy for 2-dimensional groups with uniform uniform exponential growth. This criterion is shown by analyzing the fiber π 1 -growth collapse and non-collapsing assumptions of Babenko–Sabourau (Minimal volume entropy and fiber growth, arXiv:2102.04551 , 2020).
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-021-02211-9