Minimal Non-invertible Maps on the Pseudo-Circle

In this article we show that R.H. Bing’s pseudo-circle admits a minimal non-invertible map. This resolves a conjecture raised by Bruin, Kolyada and Snoha in the negative. The main tool is a variant of the Denjoy–Rees technique, further developed by Béguin–Crovisier–Le Roux, combined with detailed st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamics and differential equations 2021-12, Vol.33 (4), p.1897-1916
Hauptverfasser: Boroński, Jan P., Kennedy, Judy, Liu, Xiao-Chuan, Oprocha, Piotr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article we show that R.H. Bing’s pseudo-circle admits a minimal non-invertible map. This resolves a conjecture raised by Bruin, Kolyada and Snoha in the negative. The main tool is a variant of the Denjoy–Rees technique, further developed by Béguin–Crovisier–Le Roux, combined with detailed study of the structure of the pseudo-circle. This is the first example of a planar 1-dimensional space that admits both minimal homeomorphisms and minimal noninvertible maps.
ISSN:1040-7294
1572-9222
DOI:10.1007/s10884-020-09877-w