RETRACTED ARTICLE: Positive Stable Shared Frailty Models Based on Additive Hazards
Frailty models are used in the survival analysis to account for the unobserved heterogeneity in individual risks to disease and death. To analyze the bivariate data on related survival times (e.g., matched pairs experiment, twin or family data), the shared frailty models were suggested. These models...
Gespeichert in:
Veröffentlicht in: | Statistics in biosciences 2021, Vol.13 (3), p.431-453 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Frailty models are used in the survival analysis to account for the unobserved heterogeneity in individual risks to disease and death. To analyze the bivariate data on related survival times (e.g., matched pairs experiment, twin or family data), the shared frailty models were suggested. These models are based on the assumption that frailty acts multiplicatively to hazard rate. In this paper, we assume that frailty acts additively to hazard rate. We introduce the positive stable shared frailty models with three different baseline distributions namely, the generalized log-logistic and the generalized Weibull distributions. We introduce the Bayesian estimation procedure using Markov Chain Monte Carlo (MCMC) technique to estimate the parameters involved in these models. We apply these models to a real-life bivariate survival data set of McGilchrist and Aisbett (Biometrics 47:461–466, 1991) related to the kidney infection data and a better model is suggested for the data. |
---|---|
ISSN: | 1867-1764 1867-1772 |
DOI: | 10.1007/s12561-020-09299-8 |