A Multiparameter Integrated Magnetometer Based on Combination of Scalar and Vector Fields

The diversity of magnetic field information obtained in marine geomagnetic measurements is of great relevance to defining detailed features of the targets. In this article, a solution algorithm based on the combination of scalar and vector fields is proposed. The magnetic direction of the geomagneti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2022-02, Vol.69 (2), p.2044-2054
Hauptverfasser: Ge, Jian, Wang, Rui, Dong, Haobin, Liu, Huan, Zheng, Qianwei, Qian, Junli, Huo, Zhifan, Luo, Wang, Zhu, Jun, Yuan, Zhiwen, Zhang, Haiyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The diversity of magnetic field information obtained in marine geomagnetic measurements is of great relevance to defining detailed features of the targets. In this article, a solution algorithm based on the combination of scalar and vector fields is proposed. The magnetic direction of the geomagnetic field was obtained by repeatedly applying bias fields, and the multiparameter integrated measurement is realized based on the geometric relationship of the geomagnetic parameters. To make an instrument feasible for undersea measurement, a miniaturized multiparameter magnetometer was constructed within the limited space of a pressure tank, using an Overhauser scalar sensor and a spherical coil for generating bias fields. Test platforms were built to evaluate the scalar sensor and spherical coil. Results from a nonmagnetic laboratory showed that the expanded uncertainty of the scalar sensor was 0.11 nT, whereas the magnetic field generated by the spherical coil had 97% uniformity and completely engulfed the scalar sensor. Moreover, field experiments indicated that the standard deviation of prototype instrument in magnetic direction (3^{\prime \prime }) was close to that of declination-inclination magnetometer, whereas its standard deviation in Z -component of 0.24 nT was better than that of a commercial fluxgate magnetometer. It also had markedly better measurement stability, with no temperature drift.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2021.3060671