ZUPT-Aided INS Bypassing Stance Phase Detection by Using Foot-Instability-Based Adaptive Covariance

In this paper, we propose a Foot-Instability-Based Adaptive (FIBA) covariance to dynamically adjust the covariance matrix for the pseudo-zero-velocity measurements in the Zero velocity UPdaTe (ZUPT)-aided Inertial Navigation Systems (INS). The proposed ZUPT-aided INS using the FIBA covariance is imp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2021-11, Vol.21 (21), p.24338-24348
Hauptverfasser: Jao, Chi-Shih, Shkel, Andrei M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a Foot-Instability-Based Adaptive (FIBA) covariance to dynamically adjust the covariance matrix for the pseudo-zero-velocity measurements in the Zero velocity UPdaTe (ZUPT)-aided Inertial Navigation Systems (INS). The proposed ZUPT-aided INS using the FIBA covariance is implemented in an Extended Kalman Filter (EKF) framework, which utilizes a time-varying measurement covariance matrix that is updated in each iteration according to the FIBA covariance. The FIBA covariance is designed to have a very high value during the swing phases in a gait cycle, and the value significantly decreases during the stance phases. As a result, the proposed method eliminates a need to use a binary stance phase detector in implementation of the ZUPT-aided INS. Properties of EKF innovation sequences in the algorithm were studied, and two series of indoor pedestrian navigation experiments were conducted to demonstrate the navigation performance of the proposed system. In the first series of experiments, which included cases of walking and running, localization solutions produced by the system using the FIBA covariance demonstrated 36% and 64% improvements in navigation accuracy along the horizontal and vertical directions, respectively. In the second series of experiments, which included a pedestrian walking on different indoor terrains, such as flat planes, stairs, and ramps, the navigation accuracy of the system using the FIBA covariance reduced horizontal and vertical position errors by 12% and 45%, respectively, as compared to the conventional ZUPT-aided INS.
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2021.3112140