Privatized Distributed Anomaly Detection for Large-Scale Nonlinear Uncertain Systems
In this article two limitations in current distributed model based approaches for anomaly detection in large-scale uncertain nonlinear systems are addressed. The first limitation regards the high conservativeness of deterministic detection thresholds, against which a novel family of set-based thresh...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2021-11, Vol.66 (11), p.5299-5313 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article two limitations in current distributed model based approaches for anomaly detection in large-scale uncertain nonlinear systems are addressed. The first limitation regards the high conservativeness of deterministic detection thresholds, against which a novel family of set-based thresholds is proposed. Such set-based thresholds are defined in a way to guarantee robustness in a user-defined probabilistic sense, rather than a deterministic sense. They are obtained by solving a chance-constrained optimization problem, thanks to a randomization technique based on the Scenario Approach. The second limitation regards the requirement, in distributed anomaly detection architectures, for different parties to regularly communicate local measurements. In settings where these parties want to preserve their privacy, communication may be undesirable. In order to preserve privacy and still allow for distributed detection to be implemented, a novel privacy-preserving mechanism is proposed and a so-called privatized communication protocol is introduced. Theoretical guarantees on the achievable level of privacy, along with a characterization of the robustness properties of the proposed distributed threshold set design, taking into account the privatized communication scheme, are provided. Finally, simulation studies are included to illustrate our theoretical developments. |
---|---|
ISSN: | 0018-9286 1558-2523 1558-2523 |
DOI: | 10.1109/TAC.2020.3040251 |