Corn Leaf Diseases Diagnosis Based on K-Means Clustering and Deep Learning

Accurate diagnosis of corn crop diseases is a complex challenge faced by farmers during the growth and production stages of corn. In order to address this problem, this paper proposes a method based on K-means clustering and an improved deep learning model for accurately diagnosing three common dise...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.143824-143835
Hauptverfasser: Yu, Helong, Liu, Jiawen, Chen, Chengcheng, Heidari, Ali Asghar, Zhang, Qian, Chen, Huiling, Mafarja, Majdi, Turabieh, Hamza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 143835
container_issue
container_start_page 143824
container_title IEEE access
container_volume 9
creator Yu, Helong
Liu, Jiawen
Chen, Chengcheng
Heidari, Ali Asghar
Zhang, Qian
Chen, Huiling
Mafarja, Majdi
Turabieh, Hamza
description Accurate diagnosis of corn crop diseases is a complex challenge faced by farmers during the growth and production stages of corn. In order to address this problem, this paper proposes a method based on K-means clustering and an improved deep learning model for accurately diagnosing three common diseases of corn leaves: gray spot, leaf spot, and rust. First, to diagnose three diseases, use the K-means algorithm to cluster sample images and then feed them into the improved deep learning model. This paper investigates the impact of various k values (2, 4, 8, 16, 32, and 64) and models (VGG-16, ResNet18, Inception v3, VGG-19, and the improved deep learning model) on corn disease diagnosis. The experiment results indicate that the method has the most significant identification effect on 32-means samples, and the diagnostic recall of leaf spot, rust, and gray spot disease is 89.24 %, 100 %, and 90.95 %, respectively. Similarly, VGG-16 and ResNet18 also achieve the best diagnostic results on 32-means samples, and their average diagnostic accuracy is 84.42% and 83.75%. In addition, Inception v3 (83.05%) and VGG-19 (82.63%) perform best on the 64-means samples. For the three corn diseases, the approach cited in this paper has an average diagnostic accuracy of 93%. It has a more significant diagnostic effect than the other four approaches and can be applied to the agricultural field to protect crops.
doi_str_mv 10.1109/ACCESS.2021.3120379
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2586591915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9576102</ieee_id><doaj_id>oai_doaj_org_article_28c3cbd0031a46c699246576b531420e</doaj_id><sourcerecordid>2586591915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-fb6acc04f92507b382f9968df1d30ebfcb5a7b0acce0a3bb9790d91535cbc9dd3</originalsourceid><addsrcrecordid>eNpNUU1PwzAMjRBIoMEv2KUS5w4nadLmCOVrMMQBOEf5cKdOoxnJduDfk9EJ4YvtJ79ny4-QKYUZpaCurtv27u1txoDRGacMeK2OyBmjUpVccHn8rz4lFymtIEeTIVGfkac2xKFYoOmK2z6hSZhyYZZDSH0qbnLvizAUz-ULmiEV7XqXthj7YVmYwRe3iJs9OQ4ZOScnnVknvDjkCfm4v3tvH8vF68O8vV6UroJmW3ZWGueg6hQTUFvesE4p2fiOeg5oO2eFqS3kGQTDrVW1Aq-o4MJZp7znEzIfdX0wK72J_aeJ3zqYXv8CIS61idverVGzxnFnPQCnppJOKsUqKWppBacVA8xal6PWJoavHaatXoVdHPL5molGCkX3myeEj1MuhpQidn9bKei9B3r0QO890AcPMms6snpE_GPkr0sKjP8AlK2Asw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2586591915</pqid></control><display><type>article</type><title>Corn Leaf Diseases Diagnosis Based on K-Means Clustering and Deep Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yu, Helong ; Liu, Jiawen ; Chen, Chengcheng ; Heidari, Ali Asghar ; Zhang, Qian ; Chen, Huiling ; Mafarja, Majdi ; Turabieh, Hamza</creator><creatorcontrib>Yu, Helong ; Liu, Jiawen ; Chen, Chengcheng ; Heidari, Ali Asghar ; Zhang, Qian ; Chen, Huiling ; Mafarja, Majdi ; Turabieh, Hamza</creatorcontrib><description>Accurate diagnosis of corn crop diseases is a complex challenge faced by farmers during the growth and production stages of corn. In order to address this problem, this paper proposes a method based on K-means clustering and an improved deep learning model for accurately diagnosing three common diseases of corn leaves: gray spot, leaf spot, and rust. First, to diagnose three diseases, use the K-means algorithm to cluster sample images and then feed them into the improved deep learning model. This paper investigates the impact of various k values (2, 4, 8, 16, 32, and 64) and models (VGG-16, ResNet18, Inception v3, VGG-19, and the improved deep learning model) on corn disease diagnosis. The experiment results indicate that the method has the most significant identification effect on 32-means samples, and the diagnostic recall of leaf spot, rust, and gray spot disease is 89.24 %, 100 %, and 90.95 %, respectively. Similarly, VGG-16 and ResNet18 also achieve the best diagnostic results on 32-means samples, and their average diagnostic accuracy is 84.42% and 83.75%. In addition, Inception v3 (83.05%) and VGG-19 (82.63%) perform best on the 64-means samples. For the three corn diseases, the approach cited in this paper has an average diagnostic accuracy of 93%. It has a more significant diagnostic effect than the other four approaches and can be applied to the agricultural field to protect crops.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3120379</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Cluster analysis ; Clustering ; Convolution ; Convolutional neural networks ; Corn ; Corn leaf disease diagnosis ; Crop diseases ; Deep learning ; Diagnosis ; Diagnostic systems ; Diseases ; Feature extraction ; K-means clustering ; Kernel ; Machine learning ; Medical diagnosis ; Plant diseases ; transfer Learning ; Vector quantization</subject><ispartof>IEEE access, 2021, Vol.9, p.143824-143835</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-fb6acc04f92507b382f9968df1d30ebfcb5a7b0acce0a3bb9790d91535cbc9dd3</citedby><cites>FETCH-LOGICAL-c408t-fb6acc04f92507b382f9968df1d30ebfcb5a7b0acce0a3bb9790d91535cbc9dd3</cites><orcidid>0000-0002-0387-8252 ; 0000-0001-6938-9948 ; 0000-0002-8103-563X ; 0000-0003-4153-9742 ; 0000-0002-7714-9693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9576102$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27631,27921,27922,27923,54931</link.rule.ids></links><search><creatorcontrib>Yu, Helong</creatorcontrib><creatorcontrib>Liu, Jiawen</creatorcontrib><creatorcontrib>Chen, Chengcheng</creatorcontrib><creatorcontrib>Heidari, Ali Asghar</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Chen, Huiling</creatorcontrib><creatorcontrib>Mafarja, Majdi</creatorcontrib><creatorcontrib>Turabieh, Hamza</creatorcontrib><title>Corn Leaf Diseases Diagnosis Based on K-Means Clustering and Deep Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>Accurate diagnosis of corn crop diseases is a complex challenge faced by farmers during the growth and production stages of corn. In order to address this problem, this paper proposes a method based on K-means clustering and an improved deep learning model for accurately diagnosing three common diseases of corn leaves: gray spot, leaf spot, and rust. First, to diagnose three diseases, use the K-means algorithm to cluster sample images and then feed them into the improved deep learning model. This paper investigates the impact of various k values (2, 4, 8, 16, 32, and 64) and models (VGG-16, ResNet18, Inception v3, VGG-19, and the improved deep learning model) on corn disease diagnosis. The experiment results indicate that the method has the most significant identification effect on 32-means samples, and the diagnostic recall of leaf spot, rust, and gray spot disease is 89.24 %, 100 %, and 90.95 %, respectively. Similarly, VGG-16 and ResNet18 also achieve the best diagnostic results on 32-means samples, and their average diagnostic accuracy is 84.42% and 83.75%. In addition, Inception v3 (83.05%) and VGG-19 (82.63%) perform best on the 64-means samples. For the three corn diseases, the approach cited in this paper has an average diagnostic accuracy of 93%. It has a more significant diagnostic effect than the other four approaches and can be applied to the agricultural field to protect crops.</description><subject>Algorithms</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Convolution</subject><subject>Convolutional neural networks</subject><subject>Corn</subject><subject>Corn leaf disease diagnosis</subject><subject>Crop diseases</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Diagnostic systems</subject><subject>Diseases</subject><subject>Feature extraction</subject><subject>K-means clustering</subject><subject>Kernel</subject><subject>Machine learning</subject><subject>Medical diagnosis</subject><subject>Plant diseases</subject><subject>transfer Learning</subject><subject>Vector quantization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1PwzAMjRBIoMEv2KUS5w4nadLmCOVrMMQBOEf5cKdOoxnJduDfk9EJ4YvtJ79ny4-QKYUZpaCurtv27u1txoDRGacMeK2OyBmjUpVccHn8rz4lFymtIEeTIVGfkac2xKFYoOmK2z6hSZhyYZZDSH0qbnLvizAUz-ULmiEV7XqXthj7YVmYwRe3iJs9OQ4ZOScnnVknvDjkCfm4v3tvH8vF68O8vV6UroJmW3ZWGueg6hQTUFvesE4p2fiOeg5oO2eFqS3kGQTDrVW1Aq-o4MJZp7znEzIfdX0wK72J_aeJ3zqYXv8CIS61idverVGzxnFnPQCnppJOKsUqKWppBacVA8xal6PWJoavHaatXoVdHPL5molGCkX3myeEj1MuhpQidn9bKei9B3r0QO890AcPMms6snpE_GPkr0sKjP8AlK2Asw</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Yu, Helong</creator><creator>Liu, Jiawen</creator><creator>Chen, Chengcheng</creator><creator>Heidari, Ali Asghar</creator><creator>Zhang, Qian</creator><creator>Chen, Huiling</creator><creator>Mafarja, Majdi</creator><creator>Turabieh, Hamza</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0387-8252</orcidid><orcidid>https://orcid.org/0000-0001-6938-9948</orcidid><orcidid>https://orcid.org/0000-0002-8103-563X</orcidid><orcidid>https://orcid.org/0000-0003-4153-9742</orcidid><orcidid>https://orcid.org/0000-0002-7714-9693</orcidid></search><sort><creationdate>2021</creationdate><title>Corn Leaf Diseases Diagnosis Based on K-Means Clustering and Deep Learning</title><author>Yu, Helong ; Liu, Jiawen ; Chen, Chengcheng ; Heidari, Ali Asghar ; Zhang, Qian ; Chen, Huiling ; Mafarja, Majdi ; Turabieh, Hamza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-fb6acc04f92507b382f9968df1d30ebfcb5a7b0acce0a3bb9790d91535cbc9dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Convolution</topic><topic>Convolutional neural networks</topic><topic>Corn</topic><topic>Corn leaf disease diagnosis</topic><topic>Crop diseases</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Diagnostic systems</topic><topic>Diseases</topic><topic>Feature extraction</topic><topic>K-means clustering</topic><topic>Kernel</topic><topic>Machine learning</topic><topic>Medical diagnosis</topic><topic>Plant diseases</topic><topic>transfer Learning</topic><topic>Vector quantization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Helong</creatorcontrib><creatorcontrib>Liu, Jiawen</creatorcontrib><creatorcontrib>Chen, Chengcheng</creatorcontrib><creatorcontrib>Heidari, Ali Asghar</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Chen, Huiling</creatorcontrib><creatorcontrib>Mafarja, Majdi</creatorcontrib><creatorcontrib>Turabieh, Hamza</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Helong</au><au>Liu, Jiawen</au><au>Chen, Chengcheng</au><au>Heidari, Ali Asghar</au><au>Zhang, Qian</au><au>Chen, Huiling</au><au>Mafarja, Majdi</au><au>Turabieh, Hamza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corn Leaf Diseases Diagnosis Based on K-Means Clustering and Deep Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>143824</spage><epage>143835</epage><pages>143824-143835</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Accurate diagnosis of corn crop diseases is a complex challenge faced by farmers during the growth and production stages of corn. In order to address this problem, this paper proposes a method based on K-means clustering and an improved deep learning model for accurately diagnosing three common diseases of corn leaves: gray spot, leaf spot, and rust. First, to diagnose three diseases, use the K-means algorithm to cluster sample images and then feed them into the improved deep learning model. This paper investigates the impact of various k values (2, 4, 8, 16, 32, and 64) and models (VGG-16, ResNet18, Inception v3, VGG-19, and the improved deep learning model) on corn disease diagnosis. The experiment results indicate that the method has the most significant identification effect on 32-means samples, and the diagnostic recall of leaf spot, rust, and gray spot disease is 89.24 %, 100 %, and 90.95 %, respectively. Similarly, VGG-16 and ResNet18 also achieve the best diagnostic results on 32-means samples, and their average diagnostic accuracy is 84.42% and 83.75%. In addition, Inception v3 (83.05%) and VGG-19 (82.63%) perform best on the 64-means samples. For the three corn diseases, the approach cited in this paper has an average diagnostic accuracy of 93%. It has a more significant diagnostic effect than the other four approaches and can be applied to the agricultural field to protect crops.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3120379</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0387-8252</orcidid><orcidid>https://orcid.org/0000-0001-6938-9948</orcidid><orcidid>https://orcid.org/0000-0002-8103-563X</orcidid><orcidid>https://orcid.org/0000-0003-4153-9742</orcidid><orcidid>https://orcid.org/0000-0002-7714-9693</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.143824-143835
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2586591915
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Cluster analysis
Clustering
Convolution
Convolutional neural networks
Corn
Corn leaf disease diagnosis
Crop diseases
Deep learning
Diagnosis
Diagnostic systems
Diseases
Feature extraction
K-means clustering
Kernel
Machine learning
Medical diagnosis
Plant diseases
transfer Learning
Vector quantization
title Corn Leaf Diseases Diagnosis Based on K-Means Clustering and Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A34%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corn%20Leaf%20Diseases%20Diagnosis%20Based%20on%20K-Means%20Clustering%20and%20Deep%20Learning&rft.jtitle=IEEE%20access&rft.au=Yu,%20Helong&rft.date=2021&rft.volume=9&rft.spage=143824&rft.epage=143835&rft.pages=143824-143835&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3120379&rft_dat=%3Cproquest_ieee_%3E2586591915%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2586591915&rft_id=info:pmid/&rft_ieee_id=9576102&rft_doaj_id=oai_doaj_org_article_28c3cbd0031a46c699246576b531420e&rfr_iscdi=true