Corn Leaf Diseases Diagnosis Based on K-Means Clustering and Deep Learning
Accurate diagnosis of corn crop diseases is a complex challenge faced by farmers during the growth and production stages of corn. In order to address this problem, this paper proposes a method based on K-means clustering and an improved deep learning model for accurately diagnosing three common dise...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.143824-143835 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Accurate diagnosis of corn crop diseases is a complex challenge faced by farmers during the growth and production stages of corn. In order to address this problem, this paper proposes a method based on K-means clustering and an improved deep learning model for accurately diagnosing three common diseases of corn leaves: gray spot, leaf spot, and rust. First, to diagnose three diseases, use the K-means algorithm to cluster sample images and then feed them into the improved deep learning model. This paper investigates the impact of various k values (2, 4, 8, 16, 32, and 64) and models (VGG-16, ResNet18, Inception v3, VGG-19, and the improved deep learning model) on corn disease diagnosis. The experiment results indicate that the method has the most significant identification effect on 32-means samples, and the diagnostic recall of leaf spot, rust, and gray spot disease is 89.24 %, 100 %, and 90.95 %, respectively. Similarly, VGG-16 and ResNet18 also achieve the best diagnostic results on 32-means samples, and their average diagnostic accuracy is 84.42% and 83.75%. In addition, Inception v3 (83.05%) and VGG-19 (82.63%) perform best on the 64-means samples. For the three corn diseases, the approach cited in this paper has an average diagnostic accuracy of 93%. It has a more significant diagnostic effect than the other four approaches and can be applied to the agricultural field to protect crops. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2021.3120379 |