Synergistic effect of Cu-La0.96Sr0.04Cu0.3Mn0.7O3-δ heterostructure and oxygen vacancy engineering for high-performance Li-CO2 batteries

•Heterostructure interface consisting of exsolved Cu NPs and porous LSCM perovskite nanofibers is designed.•Synergistic effects of heterostructure and oxygen vacancy engineering are achieved.•Li-CO2 battery yields a high discharge capacity (11350 mAh g−1) and prolonged cycle lifespan (107 cycles). L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2021-11, Vol.395, p.139209, Article 139209
Hauptverfasser: Zou, Lu, Li, Ruizhu, Wang, Ziling, Yu, Faquan, Chi, Bo, Pu, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 139209
container_title Electrochimica acta
container_volume 395
creator Zou, Lu
Li, Ruizhu
Wang, Ziling
Yu, Faquan
Chi, Bo
Pu, Jian
description •Heterostructure interface consisting of exsolved Cu NPs and porous LSCM perovskite nanofibers is designed.•Synergistic effects of heterostructure and oxygen vacancy engineering are achieved.•Li-CO2 battery yields a high discharge capacity (11350 mAh g−1) and prolonged cycle lifespan (107 cycles). Li-CO2 battery is the most promising energy storage system to realize carbon-neutral energy circulation. Developing efficient, cost-effective and stable bifunctional electrocatalysts toward carbon dioxide reduction and carbon dioxide evolution reactions (CO2RR and CO2ER) is highly essential for the application of Li-CO2 battery. Herein, we explore the catalytic ability of Cu-LSCM (La0.96Sr0.04Cu0.3Mn0.7O3-δ) heterostructure in Li-CO2 battery. The LSCM perovskite substrate can provide abundant oxygen vacancies facilitating the movement of CO2 and ions. The in-situ exsolved Cu NPs ensure a strong intercalation with the perovskite and then deliver superiority catalytic activity, durability, and considerable conductivity. Accordingly, the catalyst exhibits excellent CO2RR and CO2ER activity (peak current densities: 0.4 mA cmcathodic−2, 0.22 mA cmanodic−2) in nonaqueous media. Benefiting from the mesoporous nanofiber architecture accelerating the deposition and decomposition of Li2CO3, the Li-CO2 battery with Cu-LSCM heterostructure delivers an ultrahigh discharge capacity of 11350 mAh g−1, low voltage gap of 1.35 V, and prolonged cycle lifespan of 107 cycles (restricted capacity of 1000 mAh g−1, 400 mA g−1) without obvious degradation. This work demonstrates the synergistic effect between the metal nanoparticles and perovskite oxide in the hybrid heterostructures, and exemplifies the bifunctional catalysts for Li-CO2 battery. [Display omitted]
doi_str_mv 10.1016/j.electacta.2021.139209
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2585972654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468621014997</els_id><sourcerecordid>2585972654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-eb8a436ea4de35ffd84334ef80d6a46e2405c38800fb0d5520d2cab615b014e83</originalsourceid><addsrcrecordid>eNqFkE1uFDEQhS0EEkPgDFhi7ab8027PMmoBQRo0i8DacrvLPR4l7sHujpgjcB_OwZlwNCjbSCVVLd57pfcR8p5Dw4Hrj8cG79Avrk4jQPCGy62A7Quy4aaTTJp2-5JsALhkShv9mrwp5QgAne5gQ37fnhPmKZYleooh1CQ6B9qvbOeg2erbDA2ofoVGfkvQdHvJ_v6hB1wwz2XJq1_WjNSlkc6_zhMm-uC8S_5MMU0xIeaYJhrmTA9xOrAT5nrfVwHSXWT9XtDBLTUrYnlLXgV3V_Dd_31Ffnz-9L2_Ybv9l6_99Y550cmF4WCckhqdGlG2IYxGSakwGBi1UxqFgtZLYwDCAGPbChiFd4Pm7QBcoZFX5MMl95TnnyuWxR7nNaf60oq2wuqEblVVdReVrz1LxmBPOd67fLYc7CN3e7RP3O0jd3vhXp3XFyfWEg8Rsy0-Ym08xlz1dpzjsxn_AMYGkBo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585972654</pqid></control><display><type>article</type><title>Synergistic effect of Cu-La0.96Sr0.04Cu0.3Mn0.7O3-δ heterostructure and oxygen vacancy engineering for high-performance Li-CO2 batteries</title><source>Access via ScienceDirect (Elsevier)</source><creator>Zou, Lu ; Li, Ruizhu ; Wang, Ziling ; Yu, Faquan ; Chi, Bo ; Pu, Jian</creator><creatorcontrib>Zou, Lu ; Li, Ruizhu ; Wang, Ziling ; Yu, Faquan ; Chi, Bo ; Pu, Jian</creatorcontrib><description>•Heterostructure interface consisting of exsolved Cu NPs and porous LSCM perovskite nanofibers is designed.•Synergistic effects of heterostructure and oxygen vacancy engineering are achieved.•Li-CO2 battery yields a high discharge capacity (11350 mAh g−1) and prolonged cycle lifespan (107 cycles). Li-CO2 battery is the most promising energy storage system to realize carbon-neutral energy circulation. Developing efficient, cost-effective and stable bifunctional electrocatalysts toward carbon dioxide reduction and carbon dioxide evolution reactions (CO2RR and CO2ER) is highly essential for the application of Li-CO2 battery. Herein, we explore the catalytic ability of Cu-LSCM (La0.96Sr0.04Cu0.3Mn0.7O3-δ) heterostructure in Li-CO2 battery. The LSCM perovskite substrate can provide abundant oxygen vacancies facilitating the movement of CO2 and ions. The in-situ exsolved Cu NPs ensure a strong intercalation with the perovskite and then deliver superiority catalytic activity, durability, and considerable conductivity. Accordingly, the catalyst exhibits excellent CO2RR and CO2ER activity (peak current densities: 0.4 mA cmcathodic−2, 0.22 mA cmanodic−2) in nonaqueous media. Benefiting from the mesoporous nanofiber architecture accelerating the deposition and decomposition of Li2CO3, the Li-CO2 battery with Cu-LSCM heterostructure delivers an ultrahigh discharge capacity of 11350 mAh g−1, low voltage gap of 1.35 V, and prolonged cycle lifespan of 107 cycles (restricted capacity of 1000 mAh g−1, 400 mA g−1) without obvious degradation. This work demonstrates the synergistic effect between the metal nanoparticles and perovskite oxide in the hybrid heterostructures, and exemplifies the bifunctional catalysts for Li-CO2 battery. [Display omitted]</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2021.139209</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Carbon dioxide ; Catalysts ; Catalytic activity ; Cu-La0.96Sr0.04Cu0.3Mn0.7O3-δ nanofibers ; Electrocatalysts ; Energy storage ; Heterostructure ; Heterostructures ; Li-CO2 battery ; Low voltage ; Nanofibers ; Nanoparticles ; Oxygen vacancy engineering ; Perovskites ; Storage batteries ; Substrates ; Synergistic effect ; Vacancies</subject><ispartof>Electrochimica acta, 2021-11, Vol.395, p.139209, Article 139209</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Nov 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-eb8a436ea4de35ffd84334ef80d6a46e2405c38800fb0d5520d2cab615b014e83</citedby><cites>FETCH-LOGICAL-c273t-eb8a436ea4de35ffd84334ef80d6a46e2405c38800fb0d5520d2cab615b014e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2021.139209$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zou, Lu</creatorcontrib><creatorcontrib>Li, Ruizhu</creatorcontrib><creatorcontrib>Wang, Ziling</creatorcontrib><creatorcontrib>Yu, Faquan</creatorcontrib><creatorcontrib>Chi, Bo</creatorcontrib><creatorcontrib>Pu, Jian</creatorcontrib><title>Synergistic effect of Cu-La0.96Sr0.04Cu0.3Mn0.7O3-δ heterostructure and oxygen vacancy engineering for high-performance Li-CO2 batteries</title><title>Electrochimica acta</title><description>•Heterostructure interface consisting of exsolved Cu NPs and porous LSCM perovskite nanofibers is designed.•Synergistic effects of heterostructure and oxygen vacancy engineering are achieved.•Li-CO2 battery yields a high discharge capacity (11350 mAh g−1) and prolonged cycle lifespan (107 cycles). Li-CO2 battery is the most promising energy storage system to realize carbon-neutral energy circulation. Developing efficient, cost-effective and stable bifunctional electrocatalysts toward carbon dioxide reduction and carbon dioxide evolution reactions (CO2RR and CO2ER) is highly essential for the application of Li-CO2 battery. Herein, we explore the catalytic ability of Cu-LSCM (La0.96Sr0.04Cu0.3Mn0.7O3-δ) heterostructure in Li-CO2 battery. The LSCM perovskite substrate can provide abundant oxygen vacancies facilitating the movement of CO2 and ions. The in-situ exsolved Cu NPs ensure a strong intercalation with the perovskite and then deliver superiority catalytic activity, durability, and considerable conductivity. Accordingly, the catalyst exhibits excellent CO2RR and CO2ER activity (peak current densities: 0.4 mA cmcathodic−2, 0.22 mA cmanodic−2) in nonaqueous media. Benefiting from the mesoporous nanofiber architecture accelerating the deposition and decomposition of Li2CO3, the Li-CO2 battery with Cu-LSCM heterostructure delivers an ultrahigh discharge capacity of 11350 mAh g−1, low voltage gap of 1.35 V, and prolonged cycle lifespan of 107 cycles (restricted capacity of 1000 mAh g−1, 400 mA g−1) without obvious degradation. This work demonstrates the synergistic effect between the metal nanoparticles and perovskite oxide in the hybrid heterostructures, and exemplifies the bifunctional catalysts for Li-CO2 battery. [Display omitted]</description><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Cu-La0.96Sr0.04Cu0.3Mn0.7O3-δ nanofibers</subject><subject>Electrocatalysts</subject><subject>Energy storage</subject><subject>Heterostructure</subject><subject>Heterostructures</subject><subject>Li-CO2 battery</subject><subject>Low voltage</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Oxygen vacancy engineering</subject><subject>Perovskites</subject><subject>Storage batteries</subject><subject>Substrates</subject><subject>Synergistic effect</subject><subject>Vacancies</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1uFDEQhS0EEkPgDFhi7ab8027PMmoBQRo0i8DacrvLPR4l7sHujpgjcB_OwZlwNCjbSCVVLd57pfcR8p5Dw4Hrj8cG79Avrk4jQPCGy62A7Quy4aaTTJp2-5JsALhkShv9mrwp5QgAne5gQ37fnhPmKZYleooh1CQ6B9qvbOeg2erbDA2ofoVGfkvQdHvJ_v6hB1wwz2XJq1_WjNSlkc6_zhMm-uC8S_5MMU0xIeaYJhrmTA9xOrAT5nrfVwHSXWT9XtDBLTUrYnlLXgV3V_Dd_31Ffnz-9L2_Ybv9l6_99Y550cmF4WCckhqdGlG2IYxGSakwGBi1UxqFgtZLYwDCAGPbChiFd4Pm7QBcoZFX5MMl95TnnyuWxR7nNaf60oq2wuqEblVVdReVrz1LxmBPOd67fLYc7CN3e7RP3O0jd3vhXp3XFyfWEg8Rsy0-Ym08xlz1dpzjsxn_AMYGkBo</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Zou, Lu</creator><creator>Li, Ruizhu</creator><creator>Wang, Ziling</creator><creator>Yu, Faquan</creator><creator>Chi, Bo</creator><creator>Pu, Jian</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20211101</creationdate><title>Synergistic effect of Cu-La0.96Sr0.04Cu0.3Mn0.7O3-δ heterostructure and oxygen vacancy engineering for high-performance Li-CO2 batteries</title><author>Zou, Lu ; Li, Ruizhu ; Wang, Ziling ; Yu, Faquan ; Chi, Bo ; Pu, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-eb8a436ea4de35ffd84334ef80d6a46e2405c38800fb0d5520d2cab615b014e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Cu-La0.96Sr0.04Cu0.3Mn0.7O3-δ nanofibers</topic><topic>Electrocatalysts</topic><topic>Energy storage</topic><topic>Heterostructure</topic><topic>Heterostructures</topic><topic>Li-CO2 battery</topic><topic>Low voltage</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Oxygen vacancy engineering</topic><topic>Perovskites</topic><topic>Storage batteries</topic><topic>Substrates</topic><topic>Synergistic effect</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Lu</creatorcontrib><creatorcontrib>Li, Ruizhu</creatorcontrib><creatorcontrib>Wang, Ziling</creatorcontrib><creatorcontrib>Yu, Faquan</creatorcontrib><creatorcontrib>Chi, Bo</creatorcontrib><creatorcontrib>Pu, Jian</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Lu</au><au>Li, Ruizhu</au><au>Wang, Ziling</au><au>Yu, Faquan</au><au>Chi, Bo</au><au>Pu, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic effect of Cu-La0.96Sr0.04Cu0.3Mn0.7O3-δ heterostructure and oxygen vacancy engineering for high-performance Li-CO2 batteries</atitle><jtitle>Electrochimica acta</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>395</volume><spage>139209</spage><pages>139209-</pages><artnum>139209</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>•Heterostructure interface consisting of exsolved Cu NPs and porous LSCM perovskite nanofibers is designed.•Synergistic effects of heterostructure and oxygen vacancy engineering are achieved.•Li-CO2 battery yields a high discharge capacity (11350 mAh g−1) and prolonged cycle lifespan (107 cycles). Li-CO2 battery is the most promising energy storage system to realize carbon-neutral energy circulation. Developing efficient, cost-effective and stable bifunctional electrocatalysts toward carbon dioxide reduction and carbon dioxide evolution reactions (CO2RR and CO2ER) is highly essential for the application of Li-CO2 battery. Herein, we explore the catalytic ability of Cu-LSCM (La0.96Sr0.04Cu0.3Mn0.7O3-δ) heterostructure in Li-CO2 battery. The LSCM perovskite substrate can provide abundant oxygen vacancies facilitating the movement of CO2 and ions. The in-situ exsolved Cu NPs ensure a strong intercalation with the perovskite and then deliver superiority catalytic activity, durability, and considerable conductivity. Accordingly, the catalyst exhibits excellent CO2RR and CO2ER activity (peak current densities: 0.4 mA cmcathodic−2, 0.22 mA cmanodic−2) in nonaqueous media. Benefiting from the mesoporous nanofiber architecture accelerating the deposition and decomposition of Li2CO3, the Li-CO2 battery with Cu-LSCM heterostructure delivers an ultrahigh discharge capacity of 11350 mAh g−1, low voltage gap of 1.35 V, and prolonged cycle lifespan of 107 cycles (restricted capacity of 1000 mAh g−1, 400 mA g−1) without obvious degradation. This work demonstrates the synergistic effect between the metal nanoparticles and perovskite oxide in the hybrid heterostructures, and exemplifies the bifunctional catalysts for Li-CO2 battery. [Display omitted]</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2021.139209</doi></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2021-11, Vol.395, p.139209, Article 139209
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_journals_2585972654
source Access via ScienceDirect (Elsevier)
subjects Carbon dioxide
Catalysts
Catalytic activity
Cu-La0.96Sr0.04Cu0.3Mn0.7O3-δ nanofibers
Electrocatalysts
Energy storage
Heterostructure
Heterostructures
Li-CO2 battery
Low voltage
Nanofibers
Nanoparticles
Oxygen vacancy engineering
Perovskites
Storage batteries
Substrates
Synergistic effect
Vacancies
title Synergistic effect of Cu-La0.96Sr0.04Cu0.3Mn0.7O3-δ heterostructure and oxygen vacancy engineering for high-performance Li-CO2 batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A44%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20effect%20of%20Cu-La0.96Sr0.04Cu0.3Mn0.7O3-%CE%B4%20heterostructure%20and%20oxygen%20vacancy%20engineering%20for%20high-performance%20Li-CO2%20batteries&rft.jtitle=Electrochimica%20acta&rft.au=Zou,%20Lu&rft.date=2021-11-01&rft.volume=395&rft.spage=139209&rft.pages=139209-&rft.artnum=139209&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2021.139209&rft_dat=%3Cproquest_cross%3E2585972654%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2585972654&rft_id=info:pmid/&rft_els_id=S0013468621014997&rfr_iscdi=true