Synergistic effect of Cu-La0.96Sr0.04Cu0.3Mn0.7O3-δ heterostructure and oxygen vacancy engineering for high-performance Li-CO2 batteries
•Heterostructure interface consisting of exsolved Cu NPs and porous LSCM perovskite nanofibers is designed.•Synergistic effects of heterostructure and oxygen vacancy engineering are achieved.•Li-CO2 battery yields a high discharge capacity (11350 mAh g−1) and prolonged cycle lifespan (107 cycles). L...
Gespeichert in:
Veröffentlicht in: | Electrochimica acta 2021-11, Vol.395, p.139209, Article 139209 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 139209 |
container_title | Electrochimica acta |
container_volume | 395 |
creator | Zou, Lu Li, Ruizhu Wang, Ziling Yu, Faquan Chi, Bo Pu, Jian |
description | •Heterostructure interface consisting of exsolved Cu NPs and porous LSCM perovskite nanofibers is designed.•Synergistic effects of heterostructure and oxygen vacancy engineering are achieved.•Li-CO2 battery yields a high discharge capacity (11350 mAh g−1) and prolonged cycle lifespan (107 cycles).
Li-CO2 battery is the most promising energy storage system to realize carbon-neutral energy circulation. Developing efficient, cost-effective and stable bifunctional electrocatalysts toward carbon dioxide reduction and carbon dioxide evolution reactions (CO2RR and CO2ER) is highly essential for the application of Li-CO2 battery. Herein, we explore the catalytic ability of Cu-LSCM (La0.96Sr0.04Cu0.3Mn0.7O3-δ) heterostructure in Li-CO2 battery. The LSCM perovskite substrate can provide abundant oxygen vacancies facilitating the movement of CO2 and ions. The in-situ exsolved Cu NPs ensure a strong intercalation with the perovskite and then deliver superiority catalytic activity, durability, and considerable conductivity. Accordingly, the catalyst exhibits excellent CO2RR and CO2ER activity (peak current densities: 0.4 mA cmcathodic−2, 0.22 mA cmanodic−2) in nonaqueous media. Benefiting from the mesoporous nanofiber architecture accelerating the deposition and decomposition of Li2CO3, the Li-CO2 battery with Cu-LSCM heterostructure delivers an ultrahigh discharge capacity of 11350 mAh g−1, low voltage gap of 1.35 V, and prolonged cycle lifespan of 107 cycles (restricted capacity of 1000 mAh g−1, 400 mA g−1) without obvious degradation. This work demonstrates the synergistic effect between the metal nanoparticles and perovskite oxide in the hybrid heterostructures, and exemplifies the bifunctional catalysts for Li-CO2 battery.
[Display omitted] |
doi_str_mv | 10.1016/j.electacta.2021.139209 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2585972654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468621014997</els_id><sourcerecordid>2585972654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-eb8a436ea4de35ffd84334ef80d6a46e2405c38800fb0d5520d2cab615b014e83</originalsourceid><addsrcrecordid>eNqFkE1uFDEQhS0EEkPgDFhi7ab8027PMmoBQRo0i8DacrvLPR4l7sHujpgjcB_OwZlwNCjbSCVVLd57pfcR8p5Dw4Hrj8cG79Avrk4jQPCGy62A7Quy4aaTTJp2-5JsALhkShv9mrwp5QgAne5gQ37fnhPmKZYleooh1CQ6B9qvbOeg2erbDA2ofoVGfkvQdHvJ_v6hB1wwz2XJq1_WjNSlkc6_zhMm-uC8S_5MMU0xIeaYJhrmTA9xOrAT5nrfVwHSXWT9XtDBLTUrYnlLXgV3V_Dd_31Ffnz-9L2_Ybv9l6_99Y550cmF4WCckhqdGlG2IYxGSakwGBi1UxqFgtZLYwDCAGPbChiFd4Pm7QBcoZFX5MMl95TnnyuWxR7nNaf60oq2wuqEblVVdReVrz1LxmBPOd67fLYc7CN3e7RP3O0jd3vhXp3XFyfWEg8Rsy0-Ym08xlz1dpzjsxn_AMYGkBo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2585972654</pqid></control><display><type>article</type><title>Synergistic effect of Cu-La0.96Sr0.04Cu0.3Mn0.7O3-δ heterostructure and oxygen vacancy engineering for high-performance Li-CO2 batteries</title><source>Access via ScienceDirect (Elsevier)</source><creator>Zou, Lu ; Li, Ruizhu ; Wang, Ziling ; Yu, Faquan ; Chi, Bo ; Pu, Jian</creator><creatorcontrib>Zou, Lu ; Li, Ruizhu ; Wang, Ziling ; Yu, Faquan ; Chi, Bo ; Pu, Jian</creatorcontrib><description>•Heterostructure interface consisting of exsolved Cu NPs and porous LSCM perovskite nanofibers is designed.•Synergistic effects of heterostructure and oxygen vacancy engineering are achieved.•Li-CO2 battery yields a high discharge capacity (11350 mAh g−1) and prolonged cycle lifespan (107 cycles).
Li-CO2 battery is the most promising energy storage system to realize carbon-neutral energy circulation. Developing efficient, cost-effective and stable bifunctional electrocatalysts toward carbon dioxide reduction and carbon dioxide evolution reactions (CO2RR and CO2ER) is highly essential for the application of Li-CO2 battery. Herein, we explore the catalytic ability of Cu-LSCM (La0.96Sr0.04Cu0.3Mn0.7O3-δ) heterostructure in Li-CO2 battery. The LSCM perovskite substrate can provide abundant oxygen vacancies facilitating the movement of CO2 and ions. The in-situ exsolved Cu NPs ensure a strong intercalation with the perovskite and then deliver superiority catalytic activity, durability, and considerable conductivity. Accordingly, the catalyst exhibits excellent CO2RR and CO2ER activity (peak current densities: 0.4 mA cmcathodic−2, 0.22 mA cmanodic−2) in nonaqueous media. Benefiting from the mesoporous nanofiber architecture accelerating the deposition and decomposition of Li2CO3, the Li-CO2 battery with Cu-LSCM heterostructure delivers an ultrahigh discharge capacity of 11350 mAh g−1, low voltage gap of 1.35 V, and prolonged cycle lifespan of 107 cycles (restricted capacity of 1000 mAh g−1, 400 mA g−1) without obvious degradation. This work demonstrates the synergistic effect between the metal nanoparticles and perovskite oxide in the hybrid heterostructures, and exemplifies the bifunctional catalysts for Li-CO2 battery.
[Display omitted]</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2021.139209</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Carbon dioxide ; Catalysts ; Catalytic activity ; Cu-La0.96Sr0.04Cu0.3Mn0.7O3-δ nanofibers ; Electrocatalysts ; Energy storage ; Heterostructure ; Heterostructures ; Li-CO2 battery ; Low voltage ; Nanofibers ; Nanoparticles ; Oxygen vacancy engineering ; Perovskites ; Storage batteries ; Substrates ; Synergistic effect ; Vacancies</subject><ispartof>Electrochimica acta, 2021-11, Vol.395, p.139209, Article 139209</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Nov 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-eb8a436ea4de35ffd84334ef80d6a46e2405c38800fb0d5520d2cab615b014e83</citedby><cites>FETCH-LOGICAL-c273t-eb8a436ea4de35ffd84334ef80d6a46e2405c38800fb0d5520d2cab615b014e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.electacta.2021.139209$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zou, Lu</creatorcontrib><creatorcontrib>Li, Ruizhu</creatorcontrib><creatorcontrib>Wang, Ziling</creatorcontrib><creatorcontrib>Yu, Faquan</creatorcontrib><creatorcontrib>Chi, Bo</creatorcontrib><creatorcontrib>Pu, Jian</creatorcontrib><title>Synergistic effect of Cu-La0.96Sr0.04Cu0.3Mn0.7O3-δ heterostructure and oxygen vacancy engineering for high-performance Li-CO2 batteries</title><title>Electrochimica acta</title><description>•Heterostructure interface consisting of exsolved Cu NPs and porous LSCM perovskite nanofibers is designed.•Synergistic effects of heterostructure and oxygen vacancy engineering are achieved.•Li-CO2 battery yields a high discharge capacity (11350 mAh g−1) and prolonged cycle lifespan (107 cycles).
Li-CO2 battery is the most promising energy storage system to realize carbon-neutral energy circulation. Developing efficient, cost-effective and stable bifunctional electrocatalysts toward carbon dioxide reduction and carbon dioxide evolution reactions (CO2RR and CO2ER) is highly essential for the application of Li-CO2 battery. Herein, we explore the catalytic ability of Cu-LSCM (La0.96Sr0.04Cu0.3Mn0.7O3-δ) heterostructure in Li-CO2 battery. The LSCM perovskite substrate can provide abundant oxygen vacancies facilitating the movement of CO2 and ions. The in-situ exsolved Cu NPs ensure a strong intercalation with the perovskite and then deliver superiority catalytic activity, durability, and considerable conductivity. Accordingly, the catalyst exhibits excellent CO2RR and CO2ER activity (peak current densities: 0.4 mA cmcathodic−2, 0.22 mA cmanodic−2) in nonaqueous media. Benefiting from the mesoporous nanofiber architecture accelerating the deposition and decomposition of Li2CO3, the Li-CO2 battery with Cu-LSCM heterostructure delivers an ultrahigh discharge capacity of 11350 mAh g−1, low voltage gap of 1.35 V, and prolonged cycle lifespan of 107 cycles (restricted capacity of 1000 mAh g−1, 400 mA g−1) without obvious degradation. This work demonstrates the synergistic effect between the metal nanoparticles and perovskite oxide in the hybrid heterostructures, and exemplifies the bifunctional catalysts for Li-CO2 battery.
[Display omitted]</description><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Cu-La0.96Sr0.04Cu0.3Mn0.7O3-δ nanofibers</subject><subject>Electrocatalysts</subject><subject>Energy storage</subject><subject>Heterostructure</subject><subject>Heterostructures</subject><subject>Li-CO2 battery</subject><subject>Low voltage</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Oxygen vacancy engineering</subject><subject>Perovskites</subject><subject>Storage batteries</subject><subject>Substrates</subject><subject>Synergistic effect</subject><subject>Vacancies</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE1uFDEQhS0EEkPgDFhi7ab8027PMmoBQRo0i8DacrvLPR4l7sHujpgjcB_OwZlwNCjbSCVVLd57pfcR8p5Dw4Hrj8cG79Avrk4jQPCGy62A7Quy4aaTTJp2-5JsALhkShv9mrwp5QgAne5gQ37fnhPmKZYleooh1CQ6B9qvbOeg2erbDA2ofoVGfkvQdHvJ_v6hB1wwz2XJq1_WjNSlkc6_zhMm-uC8S_5MMU0xIeaYJhrmTA9xOrAT5nrfVwHSXWT9XtDBLTUrYnlLXgV3V_Dd_31Ffnz-9L2_Ybv9l6_99Y550cmF4WCckhqdGlG2IYxGSakwGBi1UxqFgtZLYwDCAGPbChiFd4Pm7QBcoZFX5MMl95TnnyuWxR7nNaf60oq2wuqEblVVdReVrz1LxmBPOd67fLYc7CN3e7RP3O0jd3vhXp3XFyfWEg8Rsy0-Ym08xlz1dpzjsxn_AMYGkBo</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Zou, Lu</creator><creator>Li, Ruizhu</creator><creator>Wang, Ziling</creator><creator>Yu, Faquan</creator><creator>Chi, Bo</creator><creator>Pu, Jian</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20211101</creationdate><title>Synergistic effect of Cu-La0.96Sr0.04Cu0.3Mn0.7O3-δ heterostructure and oxygen vacancy engineering for high-performance Li-CO2 batteries</title><author>Zou, Lu ; Li, Ruizhu ; Wang, Ziling ; Yu, Faquan ; Chi, Bo ; Pu, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-eb8a436ea4de35ffd84334ef80d6a46e2405c38800fb0d5520d2cab615b014e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Cu-La0.96Sr0.04Cu0.3Mn0.7O3-δ nanofibers</topic><topic>Electrocatalysts</topic><topic>Energy storage</topic><topic>Heterostructure</topic><topic>Heterostructures</topic><topic>Li-CO2 battery</topic><topic>Low voltage</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Oxygen vacancy engineering</topic><topic>Perovskites</topic><topic>Storage batteries</topic><topic>Substrates</topic><topic>Synergistic effect</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Lu</creatorcontrib><creatorcontrib>Li, Ruizhu</creatorcontrib><creatorcontrib>Wang, Ziling</creatorcontrib><creatorcontrib>Yu, Faquan</creatorcontrib><creatorcontrib>Chi, Bo</creatorcontrib><creatorcontrib>Pu, Jian</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Lu</au><au>Li, Ruizhu</au><au>Wang, Ziling</au><au>Yu, Faquan</au><au>Chi, Bo</au><au>Pu, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic effect of Cu-La0.96Sr0.04Cu0.3Mn0.7O3-δ heterostructure and oxygen vacancy engineering for high-performance Li-CO2 batteries</atitle><jtitle>Electrochimica acta</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>395</volume><spage>139209</spage><pages>139209-</pages><artnum>139209</artnum><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>•Heterostructure interface consisting of exsolved Cu NPs and porous LSCM perovskite nanofibers is designed.•Synergistic effects of heterostructure and oxygen vacancy engineering are achieved.•Li-CO2 battery yields a high discharge capacity (11350 mAh g−1) and prolonged cycle lifespan (107 cycles).
Li-CO2 battery is the most promising energy storage system to realize carbon-neutral energy circulation. Developing efficient, cost-effective and stable bifunctional electrocatalysts toward carbon dioxide reduction and carbon dioxide evolution reactions (CO2RR and CO2ER) is highly essential for the application of Li-CO2 battery. Herein, we explore the catalytic ability of Cu-LSCM (La0.96Sr0.04Cu0.3Mn0.7O3-δ) heterostructure in Li-CO2 battery. The LSCM perovskite substrate can provide abundant oxygen vacancies facilitating the movement of CO2 and ions. The in-situ exsolved Cu NPs ensure a strong intercalation with the perovskite and then deliver superiority catalytic activity, durability, and considerable conductivity. Accordingly, the catalyst exhibits excellent CO2RR and CO2ER activity (peak current densities: 0.4 mA cmcathodic−2, 0.22 mA cmanodic−2) in nonaqueous media. Benefiting from the mesoporous nanofiber architecture accelerating the deposition and decomposition of Li2CO3, the Li-CO2 battery with Cu-LSCM heterostructure delivers an ultrahigh discharge capacity of 11350 mAh g−1, low voltage gap of 1.35 V, and prolonged cycle lifespan of 107 cycles (restricted capacity of 1000 mAh g−1, 400 mA g−1) without obvious degradation. This work demonstrates the synergistic effect between the metal nanoparticles and perovskite oxide in the hybrid heterostructures, and exemplifies the bifunctional catalysts for Li-CO2 battery.
[Display omitted]</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2021.139209</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-4686 |
ispartof | Electrochimica acta, 2021-11, Vol.395, p.139209, Article 139209 |
issn | 0013-4686 1873-3859 |
language | eng |
recordid | cdi_proquest_journals_2585972654 |
source | Access via ScienceDirect (Elsevier) |
subjects | Carbon dioxide Catalysts Catalytic activity Cu-La0.96Sr0.04Cu0.3Mn0.7O3-δ nanofibers Electrocatalysts Energy storage Heterostructure Heterostructures Li-CO2 battery Low voltage Nanofibers Nanoparticles Oxygen vacancy engineering Perovskites Storage batteries Substrates Synergistic effect Vacancies |
title | Synergistic effect of Cu-La0.96Sr0.04Cu0.3Mn0.7O3-δ heterostructure and oxygen vacancy engineering for high-performance Li-CO2 batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A44%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20effect%20of%20Cu-La0.96Sr0.04Cu0.3Mn0.7O3-%CE%B4%20heterostructure%20and%20oxygen%20vacancy%20engineering%20for%20high-performance%20Li-CO2%20batteries&rft.jtitle=Electrochimica%20acta&rft.au=Zou,%20Lu&rft.date=2021-11-01&rft.volume=395&rft.spage=139209&rft.pages=139209-&rft.artnum=139209&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2021.139209&rft_dat=%3Cproquest_cross%3E2585972654%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2585972654&rft_id=info:pmid/&rft_els_id=S0013468621014997&rfr_iscdi=true |