Synergistic effect of Cu-La0.96Sr0.04Cu0.3Mn0.7O3-δ heterostructure and oxygen vacancy engineering for high-performance Li-CO2 batteries

•Heterostructure interface consisting of exsolved Cu NPs and porous LSCM perovskite nanofibers is designed.•Synergistic effects of heterostructure and oxygen vacancy engineering are achieved.•Li-CO2 battery yields a high discharge capacity (11350 mAh g−1) and prolonged cycle lifespan (107 cycles). L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2021-11, Vol.395, p.139209, Article 139209
Hauptverfasser: Zou, Lu, Li, Ruizhu, Wang, Ziling, Yu, Faquan, Chi, Bo, Pu, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Heterostructure interface consisting of exsolved Cu NPs and porous LSCM perovskite nanofibers is designed.•Synergistic effects of heterostructure and oxygen vacancy engineering are achieved.•Li-CO2 battery yields a high discharge capacity (11350 mAh g−1) and prolonged cycle lifespan (107 cycles). Li-CO2 battery is the most promising energy storage system to realize carbon-neutral energy circulation. Developing efficient, cost-effective and stable bifunctional electrocatalysts toward carbon dioxide reduction and carbon dioxide evolution reactions (CO2RR and CO2ER) is highly essential for the application of Li-CO2 battery. Herein, we explore the catalytic ability of Cu-LSCM (La0.96Sr0.04Cu0.3Mn0.7O3-δ) heterostructure in Li-CO2 battery. The LSCM perovskite substrate can provide abundant oxygen vacancies facilitating the movement of CO2 and ions. The in-situ exsolved Cu NPs ensure a strong intercalation with the perovskite and then deliver superiority catalytic activity, durability, and considerable conductivity. Accordingly, the catalyst exhibits excellent CO2RR and CO2ER activity (peak current densities: 0.4 mA cmcathodic−2, 0.22 mA cmanodic−2) in nonaqueous media. Benefiting from the mesoporous nanofiber architecture accelerating the deposition and decomposition of Li2CO3, the Li-CO2 battery with Cu-LSCM heterostructure delivers an ultrahigh discharge capacity of 11350 mAh g−1, low voltage gap of 1.35 V, and prolonged cycle lifespan of 107 cycles (restricted capacity of 1000 mAh g−1, 400 mA g−1) without obvious degradation. This work demonstrates the synergistic effect between the metal nanoparticles and perovskite oxide in the hybrid heterostructures, and exemplifies the bifunctional catalysts for Li-CO2 battery. [Display omitted]
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2021.139209