Biologically inspired micro-robotic swimmers remotely controlled by ultrasound waves

We 3D print micro-robotic swimmers with the size of animal cells using a Nanoscribe. The micro-swimmers are powered by the microstreaming flows induced by the oscillating air bubbles entrapped within the micro-robotic swimmers. Previously, micro-swimmers propelled by acoustic streaming require the u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2021-10, Vol.21 (21), p.495-413
Hauptverfasser: Luo, Tao, Wu, Mingming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We 3D print micro-robotic swimmers with the size of animal cells using a Nanoscribe. The micro-swimmers are powered by the microstreaming flows induced by the oscillating air bubbles entrapped within the micro-robotic swimmers. Previously, micro-swimmers propelled by acoustic streaming require the use of a magnetic field or an additional ultrasound transducer to steer their direction. Here, we show a two-bubble based micro-swimmer that can be propelled and steered entirely using one ultrasound transducer. The swimmer displays boundary following traits similar to those biological swimmers that are known to be important for performing robust biological functions. The micro-robotic swimmer has the potential to advance the current technology in targeted drug delivery and remote microsurgery. We report a two-bubble based micro-swimmer that can be propelled and steered entirely using one ultrasound transducer.
ISSN:1473-0197
1473-0189
DOI:10.1039/d1lc00575h