Error estimation of the Besse Relaxation Scheme for a semilinear heat equation
The solution to the initial and Dirichlet boundary value problem for a semilinear, one dimensional heat equation is approximated by a numerical method that combines the Besse Relaxation Scheme in time [ C. R. Acad. Sci. Paris Sér. I 326 (1998)] with a central finite difference method in space. A new...
Gespeichert in:
Veröffentlicht in: | ESAIM. Mathematical modelling and numerical analysis 2021-01, Vol.55 (1), p.301-328 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The solution to the initial and Dirichlet boundary value problem for a semilinear, one dimensional heat equation is approximated by a numerical method that combines the Besse Relaxation Scheme in time [
C. R. Acad. Sci. Paris Sér. I
326
(1998)] with a central finite difference method in space. A new, composite stability argument is developed, leading to an optimal, second-order error estimate in the discrete
L
t
∞
(
H
x
2
)-norm at the time-nodes and in the discrete
L
t
∞
(
H
x
1
)-norm at the intermediate time-nodes. It is the first time in the literature where the Besse Relaxation Scheme is applied and analysed in the context of parabolic equations. |
---|---|
ISSN: | 0764-583X 1290-3841 |
DOI: | 10.1051/m2an/2020077 |