VLDeformer: Vision-Language Decomposed Transformer for Fast Cross-Modal Retrieval
Cross-model retrieval has emerged as one of the most important upgrades for text-only search engines (SE). Recently, with powerful representation for pairwise text-image inputs via early interaction, the accuracy of vision-language (VL) transformers has outperformed existing methods for text-image r...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-11 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cross-model retrieval has emerged as one of the most important upgrades for text-only search engines (SE). Recently, with powerful representation for pairwise text-image inputs via early interaction, the accuracy of vision-language (VL) transformers has outperformed existing methods for text-image retrieval. However, when the same paradigm is used for inference, the efficiency of the VL transformers is still too low to be applied in a real cross-modal SE. Inspired by the mechanism of human learning and using cross-modal knowledge, this paper presents a novel Vision-Language Decomposed Transformer (VLDeformer), which greatly increases the efficiency of VL transformers while maintaining their outstanding accuracy. By the proposed method, the cross-model retrieval is separated into two stages: the VL transformer learning stage, and the VL decomposition stage. The latter stage plays the role of single modal indexing, which is to some extent like the term indexing of a text SE. The model learns cross-modal knowledge from early-interaction pre-training and is then decomposed into an individual encoder. The decomposition requires only small target datasets for supervision and achieves both \(1000+\) times acceleration and less than \(0.6\)\% average recall drop. VLDeformer also outperforms state-of-the-art visual-semantic embedding methods on COCO and Flickr30k. |
---|---|
ISSN: | 2331-8422 |