Geodesic orbit metrics in a class of homogeneous bundles over real and complex Stiefel manifolds
Geodesic orbit spaces (or g.o. spaces) are defined as those homogeneous Riemannian spaces ( M = G / H , g ) whose geodesics are orbits of one-parameter subgroups of G . The corresponding metric g is called a geodesic orbit metric. We study the geodesic orbit spaces of the form ( G / H , g ), such t...
Gespeichert in:
Veröffentlicht in: | Geometriae dedicata 2021-12, Vol.215 (1), p.31-50 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Geodesic orbit spaces (or g.o. spaces) are defined as those homogeneous Riemannian spaces
(
M
=
G
/
H
,
g
)
whose geodesics are orbits of one-parameter subgroups of
G
. The corresponding metric
g
is called a geodesic orbit metric. We study the geodesic orbit spaces of the form (
G
/
H
,
g
), such that
G
is one of the compact classical Lie groups
SO
(
n
)
,
U
(
n
)
, and
H
is a diagonally embedded product
H
1
×
⋯
×
H
s
, where
H
j
is of the same type as
G
. This class includes spheres, Stiefel manifolds, Grassmann manifolds and real flag manifolds. The present work is a contribution to the study of g.o. spaces (
G
/
H
,
g
) with
H
semisimple. |
---|---|
ISSN: | 0046-5755 1572-9168 |
DOI: | 10.1007/s10711-021-00639-6 |