Geodesic orbit metrics in a class of homogeneous bundles over real and complex Stiefel manifolds

Geodesic orbit spaces (or g.o. spaces) are defined as those homogeneous Riemannian spaces ( M = G / H , g ) whose geodesics are orbits of one-parameter subgroups of G . The corresponding metric g is called a geodesic orbit metric. We study the geodesic orbit spaces of the form ( G / H ,  g ), such t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata 2021-12, Vol.215 (1), p.31-50
Hauptverfasser: Arvanitoyeorgos, Andreas, Souris, Nikolaos Panagiotis, Statha, Marina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Geodesic orbit spaces (or g.o. spaces) are defined as those homogeneous Riemannian spaces ( M = G / H , g ) whose geodesics are orbits of one-parameter subgroups of G . The corresponding metric g is called a geodesic orbit metric. We study the geodesic orbit spaces of the form ( G / H ,  g ), such that G is one of the compact classical Lie groups SO ( n ) , U ( n ) , and H is a diagonally embedded product H 1 × ⋯ × H s , where H j is of the same type as G . This class includes spheres, Stiefel manifolds, Grassmann manifolds and real flag manifolds. The present work is a contribution to the study of g.o. spaces ( G / H ,  g ) with H semisimple.
ISSN:0046-5755
1572-9168
DOI:10.1007/s10711-021-00639-6