Improvement of grey wolf optimizer with adaptive middle filter to adjust support vector machine parameters to predict diabetes complications

In medical science, collecting and classifying data from various diseases is a vital task. The confused and large amounts of data are problems that prevent us from achieving acceptable results. One of the major problems for diabetic patients is a failure to properly diagnose the disease. As a result...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2021-11, Vol.33 (22), p.15205-15228
Hauptverfasser: Jeyafzam, Fereshteh, Vaziri, Babak, Suraki, Mohsen Yaghoubi, Hosseinabadi, Ali Asghar Rahmani, Slowik, Adam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In medical science, collecting and classifying data from various diseases is a vital task. The confused and large amounts of data are problems that prevent us from achieving acceptable results. One of the major problems for diabetic patients is a failure to properly diagnose the disease. As a result of this mistake in diagnosis or failure in early diagnosis, the patient may suffer from complications such as blindness, kidney failure, and cutting off the toes. Nowadays, doctors diagnose the disease by relying on their experience and knowledge and performing complex and time-consuming tests. One of the problems with current diabetic, diagnostic methods is the lack of appropriate features to diagnose the disease and consequently the weakness in its diagnosis, especially in its early stages. Since diabetes diagnosis relies on large amounts of data with many parameters, it is necessary to use machine learning methods such as support vector machine (SVM) to predict the complications of diabetes. One of the disadvantages of SVM is its parameter adjustment, which can be accomplished using metaheuristic algorithms such as particle swarm optimization algorithm (PSO), genetic algorithm, or grey wolf optimizer (GWO). In this paper, after preprocessing and preparing the dataset for data mining, we use SVM to predict complications of diabetes based on selected parameters of a patient acquired by laboratory test using improved GWO. We improve the selection process of GWO by employing dynamic adaptive middle filter, a nonlinear filter that assigns appropriate weight to each value based on the data value. Comparison of the final results of the proposed algorithm with classification methods such as a multilayer perceptron neural network, decision tree, simple Bayes, and temporal fuzzy min–max neural network (TFMM-PSO) shows the superiority of the proposed method over the comparable ones.
ISSN:0941-0643
1433-3058
DOI:10.1007/s00521-021-06143-y