Facial Landmark Detection: A Literature Survey

The locations of the fiducial facial landmark points around facial components and facial contour capture the rigid and non-rigid facial deformations due to head movements and facial expressions. They are hence important for various facial analysis tasks. Many facial landmark detection algorithms hav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer vision 2019-02, Vol.127 (2), p.115-142
Hauptverfasser: Wu, Yue, Ji, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The locations of the fiducial facial landmark points around facial components and facial contour capture the rigid and non-rigid facial deformations due to head movements and facial expressions. They are hence important for various facial analysis tasks. Many facial landmark detection algorithms have been developed to automatically detect those key points over the years, and in this paper, we perform an extensive review of them. We classify the facial landmark detection algorithms into three major categories: holistic methods, Constrained Local Model (CLM) methods, and the regression-based methods. They differ in the ways to utilize the facial appearance and shape information. The holistic methods explicitly build models to represent the global facial appearance and shape information. The CLMs explicitly leverage the global shape model but build the local appearance models. The regression based methods implicitly capture facial shape and appearance information. For algorithms within each category, we discuss their underlying theories as well as their differences. We also compare their performances on both controlled and in the wild benchmark datasets, under varying facial expressions, head poses, and occlusion. Based on the evaluations, we point out their respective strengths and weaknesses. There is also a separate section to review the latest deep learning based algorithms. The survey also includes a listing of the benchmark databases and existing software. Finally, we identify future research directions, including combining methods in different categories to leverage their respective strengths to solve landmark detection “in-the-wild”.
ISSN:0920-5691
1573-1405
DOI:10.1007/s11263-018-1097-z