A smaller extended formulation for the odd cycle inequalities of the stable set polytope
For sparse graphs, the odd cycle polytope can be used to compute useful bounds for the maximum stable set problem quickly. Yannakakis (1991) introduced an extended formulation for the odd cycle inequalities of the stable set polytope, which provides a direct way to optimize over the odd cycle polyto...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2021-11, Vol.303, p.14-21 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21 |
---|---|
container_issue | |
container_start_page | 14 |
container_title | Discrete Applied Mathematics |
container_volume | 303 |
creator | de Vries, Sven Perscheid, Bernd |
description | For sparse graphs, the odd cycle polytope can be used to compute useful bounds for the maximum stable set problem quickly. Yannakakis (1991) introduced an extended formulation for the odd cycle inequalities of the stable set polytope, which provides a direct way to optimize over the odd cycle polytope in polynomial time, although there can exist exponentially many odd cycles in given graphs in general. We present another extended formulation for the odd cycle polytope that uses less variables and inequalities than Yannakakis’ formulation. Moreover, we compare the running time of both formulations as relaxations of the maximum stable set problem in a computational study. |
doi_str_mv | 10.1016/j.dam.2020.10.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2584776691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X20304601</els_id><sourcerecordid>2584776691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-17e8d67f40211cf9b82d22cebaf2220005424285cbb3736a5ec548b9c3c81353</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIHcLPEOcF2EjsVp6riJVXi0kNvlmNvhKMkbm0H0b_HoZw57WNmdkeD0D0lOSWUP3a5UUPOCJvnnBB-gRa0FizjQtBLtEgcnjFa76_RTQgdIYSmaYH2axwG1ffgMXxHGA0Y3Do_TL2K1o1zj-MnYGcM1ifdA7YjHCfV22ghYNf-oiGqJkEBIj64_hTdAW7RVav6AHd_dYl2L8-7zVu2_Xh936y3mS5YFTMqoDZctCVhlOp21dTMMKahUS1jLNmsSlayutJNU4iCqwp0VdbNShe6pkVVLNHD-ezBu-MEIcrOTX5MHyWr6lIIzlc0seiZpb0LwUMrD94Oyp8kJXLOT3Yy5Sfn_OZVyi9pns4aSO6_LHgZtIVRg7EedJTG2X_UP8vzeAE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584776691</pqid></control><display><type>article</type><title>A smaller extended formulation for the odd cycle inequalities of the stable set polytope</title><source>Elsevier ScienceDirect Journals Complete</source><creator>de Vries, Sven ; Perscheid, Bernd</creator><creatorcontrib>de Vries, Sven ; Perscheid, Bernd</creatorcontrib><description>For sparse graphs, the odd cycle polytope can be used to compute useful bounds for the maximum stable set problem quickly. Yannakakis (1991) introduced an extended formulation for the odd cycle inequalities of the stable set polytope, which provides a direct way to optimize over the odd cycle polytope in polynomial time, although there can exist exponentially many odd cycles in given graphs in general. We present another extended formulation for the odd cycle polytope that uses less variables and inequalities than Yannakakis’ formulation. Moreover, we compare the running time of both formulations as relaxations of the maximum stable set problem in a computational study.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2020.10.006</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Extended formulation ; Graphs ; Inequalities ; Linear programming ; Odd cycle inequalities ; Polynomials ; Separation algorithm ; Stable set</subject><ispartof>Discrete Applied Mathematics, 2021-11, Vol.303, p.14-21</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-17e8d67f40211cf9b82d22cebaf2220005424285cbb3736a5ec548b9c3c81353</citedby><cites>FETCH-LOGICAL-c325t-17e8d67f40211cf9b82d22cebaf2220005424285cbb3736a5ec548b9c3c81353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2020.10.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>de Vries, Sven</creatorcontrib><creatorcontrib>Perscheid, Bernd</creatorcontrib><title>A smaller extended formulation for the odd cycle inequalities of the stable set polytope</title><title>Discrete Applied Mathematics</title><description>For sparse graphs, the odd cycle polytope can be used to compute useful bounds for the maximum stable set problem quickly. Yannakakis (1991) introduced an extended formulation for the odd cycle inequalities of the stable set polytope, which provides a direct way to optimize over the odd cycle polytope in polynomial time, although there can exist exponentially many odd cycles in given graphs in general. We present another extended formulation for the odd cycle polytope that uses less variables and inequalities than Yannakakis’ formulation. Moreover, we compare the running time of both formulations as relaxations of the maximum stable set problem in a computational study.</description><subject>Extended formulation</subject><subject>Graphs</subject><subject>Inequalities</subject><subject>Linear programming</subject><subject>Odd cycle inequalities</subject><subject>Polynomials</subject><subject>Separation algorithm</subject><subject>Stable set</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIHcLPEOcF2EjsVp6riJVXi0kNvlmNvhKMkbm0H0b_HoZw57WNmdkeD0D0lOSWUP3a5UUPOCJvnnBB-gRa0FizjQtBLtEgcnjFa76_RTQgdIYSmaYH2axwG1ffgMXxHGA0Y3Do_TL2K1o1zj-MnYGcM1ifdA7YjHCfV22ghYNf-oiGqJkEBIj64_hTdAW7RVav6AHd_dYl2L8-7zVu2_Xh936y3mS5YFTMqoDZctCVhlOp21dTMMKahUS1jLNmsSlayutJNU4iCqwp0VdbNShe6pkVVLNHD-ezBu-MEIcrOTX5MHyWr6lIIzlc0seiZpb0LwUMrD94Oyp8kJXLOT3Yy5Sfn_OZVyi9pns4aSO6_LHgZtIVRg7EedJTG2X_UP8vzeAE</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>de Vries, Sven</creator><creator>Perscheid, Bernd</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20211115</creationdate><title>A smaller extended formulation for the odd cycle inequalities of the stable set polytope</title><author>de Vries, Sven ; Perscheid, Bernd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-17e8d67f40211cf9b82d22cebaf2220005424285cbb3736a5ec548b9c3c81353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Extended formulation</topic><topic>Graphs</topic><topic>Inequalities</topic><topic>Linear programming</topic><topic>Odd cycle inequalities</topic><topic>Polynomials</topic><topic>Separation algorithm</topic><topic>Stable set</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Vries, Sven</creatorcontrib><creatorcontrib>Perscheid, Bernd</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Vries, Sven</au><au>Perscheid, Bernd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A smaller extended formulation for the odd cycle inequalities of the stable set polytope</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2021-11-15</date><risdate>2021</risdate><volume>303</volume><spage>14</spage><epage>21</epage><pages>14-21</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>For sparse graphs, the odd cycle polytope can be used to compute useful bounds for the maximum stable set problem quickly. Yannakakis (1991) introduced an extended formulation for the odd cycle inequalities of the stable set polytope, which provides a direct way to optimize over the odd cycle polytope in polynomial time, although there can exist exponentially many odd cycles in given graphs in general. We present another extended formulation for the odd cycle polytope that uses less variables and inequalities than Yannakakis’ formulation. Moreover, we compare the running time of both formulations as relaxations of the maximum stable set problem in a computational study.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2020.10.006</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2021-11, Vol.303, p.14-21 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_proquest_journals_2584776691 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Extended formulation Graphs Inequalities Linear programming Odd cycle inequalities Polynomials Separation algorithm Stable set |
title | A smaller extended formulation for the odd cycle inequalities of the stable set polytope |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20smaller%20extended%20formulation%20for%20the%20odd%20cycle%20inequalities%20of%20the%20stable%20set%20polytope&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=de%20Vries,%20Sven&rft.date=2021-11-15&rft.volume=303&rft.spage=14&rft.epage=21&rft.pages=14-21&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2020.10.006&rft_dat=%3Cproquest_cross%3E2584776691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584776691&rft_id=info:pmid/&rft_els_id=S0166218X20304601&rfr_iscdi=true |