A smaller extended formulation for the odd cycle inequalities of the stable set polytope

For sparse graphs, the odd cycle polytope can be used to compute useful bounds for the maximum stable set problem quickly. Yannakakis (1991) introduced an extended formulation for the odd cycle inequalities of the stable set polytope, which provides a direct way to optimize over the odd cycle polyto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2021-11, Vol.303, p.14-21
Hauptverfasser: de Vries, Sven, Perscheid, Bernd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue
container_start_page 14
container_title Discrete Applied Mathematics
container_volume 303
creator de Vries, Sven
Perscheid, Bernd
description For sparse graphs, the odd cycle polytope can be used to compute useful bounds for the maximum stable set problem quickly. Yannakakis (1991) introduced an extended formulation for the odd cycle inequalities of the stable set polytope, which provides a direct way to optimize over the odd cycle polytope in polynomial time, although there can exist exponentially many odd cycles in given graphs in general. We present another extended formulation for the odd cycle polytope that uses less variables and inequalities than Yannakakis’ formulation. Moreover, we compare the running time of both formulations as relaxations of the maximum stable set problem in a computational study.
doi_str_mv 10.1016/j.dam.2020.10.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2584776691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X20304601</els_id><sourcerecordid>2584776691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-17e8d67f40211cf9b82d22cebaf2220005424285cbb3736a5ec548b9c3c81353</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIHcLPEOcF2EjsVp6riJVXi0kNvlmNvhKMkbm0H0b_HoZw57WNmdkeD0D0lOSWUP3a5UUPOCJvnnBB-gRa0FizjQtBLtEgcnjFa76_RTQgdIYSmaYH2axwG1ffgMXxHGA0Y3Do_TL2K1o1zj-MnYGcM1ifdA7YjHCfV22ghYNf-oiGqJkEBIj64_hTdAW7RVav6AHd_dYl2L8-7zVu2_Xh936y3mS5YFTMqoDZctCVhlOp21dTMMKahUS1jLNmsSlayutJNU4iCqwp0VdbNShe6pkVVLNHD-ezBu-MEIcrOTX5MHyWr6lIIzlc0seiZpb0LwUMrD94Oyp8kJXLOT3Yy5Sfn_OZVyi9pns4aSO6_LHgZtIVRg7EedJTG2X_UP8vzeAE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584776691</pqid></control><display><type>article</type><title>A smaller extended formulation for the odd cycle inequalities of the stable set polytope</title><source>Elsevier ScienceDirect Journals Complete</source><creator>de Vries, Sven ; Perscheid, Bernd</creator><creatorcontrib>de Vries, Sven ; Perscheid, Bernd</creatorcontrib><description>For sparse graphs, the odd cycle polytope can be used to compute useful bounds for the maximum stable set problem quickly. Yannakakis (1991) introduced an extended formulation for the odd cycle inequalities of the stable set polytope, which provides a direct way to optimize over the odd cycle polytope in polynomial time, although there can exist exponentially many odd cycles in given graphs in general. We present another extended formulation for the odd cycle polytope that uses less variables and inequalities than Yannakakis’ formulation. Moreover, we compare the running time of both formulations as relaxations of the maximum stable set problem in a computational study.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2020.10.006</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Extended formulation ; Graphs ; Inequalities ; Linear programming ; Odd cycle inequalities ; Polynomials ; Separation algorithm ; Stable set</subject><ispartof>Discrete Applied Mathematics, 2021-11, Vol.303, p.14-21</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-17e8d67f40211cf9b82d22cebaf2220005424285cbb3736a5ec548b9c3c81353</citedby><cites>FETCH-LOGICAL-c325t-17e8d67f40211cf9b82d22cebaf2220005424285cbb3736a5ec548b9c3c81353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2020.10.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>de Vries, Sven</creatorcontrib><creatorcontrib>Perscheid, Bernd</creatorcontrib><title>A smaller extended formulation for the odd cycle inequalities of the stable set polytope</title><title>Discrete Applied Mathematics</title><description>For sparse graphs, the odd cycle polytope can be used to compute useful bounds for the maximum stable set problem quickly. Yannakakis (1991) introduced an extended formulation for the odd cycle inequalities of the stable set polytope, which provides a direct way to optimize over the odd cycle polytope in polynomial time, although there can exist exponentially many odd cycles in given graphs in general. We present another extended formulation for the odd cycle polytope that uses less variables and inequalities than Yannakakis’ formulation. Moreover, we compare the running time of both formulations as relaxations of the maximum stable set problem in a computational study.</description><subject>Extended formulation</subject><subject>Graphs</subject><subject>Inequalities</subject><subject>Linear programming</subject><subject>Odd cycle inequalities</subject><subject>Polynomials</subject><subject>Separation algorithm</subject><subject>Stable set</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIHcLPEOcF2EjsVp6riJVXi0kNvlmNvhKMkbm0H0b_HoZw57WNmdkeD0D0lOSWUP3a5UUPOCJvnnBB-gRa0FizjQtBLtEgcnjFa76_RTQgdIYSmaYH2axwG1ffgMXxHGA0Y3Do_TL2K1o1zj-MnYGcM1ifdA7YjHCfV22ghYNf-oiGqJkEBIj64_hTdAW7RVav6AHd_dYl2L8-7zVu2_Xh936y3mS5YFTMqoDZctCVhlOp21dTMMKahUS1jLNmsSlayutJNU4iCqwp0VdbNShe6pkVVLNHD-ezBu-MEIcrOTX5MHyWr6lIIzlc0seiZpb0LwUMrD94Oyp8kJXLOT3Yy5Sfn_OZVyi9pns4aSO6_LHgZtIVRg7EedJTG2X_UP8vzeAE</recordid><startdate>20211115</startdate><enddate>20211115</enddate><creator>de Vries, Sven</creator><creator>Perscheid, Bernd</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20211115</creationdate><title>A smaller extended formulation for the odd cycle inequalities of the stable set polytope</title><author>de Vries, Sven ; Perscheid, Bernd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-17e8d67f40211cf9b82d22cebaf2220005424285cbb3736a5ec548b9c3c81353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Extended formulation</topic><topic>Graphs</topic><topic>Inequalities</topic><topic>Linear programming</topic><topic>Odd cycle inequalities</topic><topic>Polynomials</topic><topic>Separation algorithm</topic><topic>Stable set</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Vries, Sven</creatorcontrib><creatorcontrib>Perscheid, Bernd</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Vries, Sven</au><au>Perscheid, Bernd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A smaller extended formulation for the odd cycle inequalities of the stable set polytope</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2021-11-15</date><risdate>2021</risdate><volume>303</volume><spage>14</spage><epage>21</epage><pages>14-21</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>For sparse graphs, the odd cycle polytope can be used to compute useful bounds for the maximum stable set problem quickly. Yannakakis (1991) introduced an extended formulation for the odd cycle inequalities of the stable set polytope, which provides a direct way to optimize over the odd cycle polytope in polynomial time, although there can exist exponentially many odd cycles in given graphs in general. We present another extended formulation for the odd cycle polytope that uses less variables and inequalities than Yannakakis’ formulation. Moreover, we compare the running time of both formulations as relaxations of the maximum stable set problem in a computational study.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2020.10.006</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2021-11, Vol.303, p.14-21
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_journals_2584776691
source Elsevier ScienceDirect Journals Complete
subjects Extended formulation
Graphs
Inequalities
Linear programming
Odd cycle inequalities
Polynomials
Separation algorithm
Stable set
title A smaller extended formulation for the odd cycle inequalities of the stable set polytope
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A44%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20smaller%20extended%20formulation%20for%20the%20odd%20cycle%20inequalities%20of%20the%20stable%20set%20polytope&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=de%20Vries,%20Sven&rft.date=2021-11-15&rft.volume=303&rft.spage=14&rft.epage=21&rft.pages=14-21&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2020.10.006&rft_dat=%3Cproquest_cross%3E2584776691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584776691&rft_id=info:pmid/&rft_els_id=S0166218X20304601&rfr_iscdi=true